Solving polynominals equations (relationship of roots)Quadratic equation - $alpha$ and $beta$ RootsTechnique...
How does Captain America channel this power?
Alignment of various blocks in tikz
What happens to Mjolnir (Thor's hammer) at the end of Endgame?
How did Captain America manage to do this?
Why was the Spitfire's elliptical wing almost uncopied by other aircraft of World War 2?
On The Origin of Dissonant Chords
Can SQL Server create collisions in system generated constraint names?
Was Dennis Ritchie being too modest in this quote about C and Pascal?
Was there a shared-world project before "Thieves World"?
How come there are so many candidates for the 2020 Democratic party presidential nomination?
How to denote matrix elements succinctly?
How can I practically buy stocks?
Can I criticise the more senior developers around me for not writing clean code?
Why do games have consumables?
What's the name of these pliers?
Providing evidence of Consent of Parents for Marriage by minor in England in early 1800s?
"Whatever a Russian does, they end up making the Kalashnikov gun"? Are there any similar proverbs in English?
Is the claim "Employers won't employ people with no 'social media presence'" realistic?
How to limit Drive Letters Windows assigns to new removable USB drives
How to have a sharp product image?
Philosophical question on logistic regression: why isn't the optimal threshold value trained?
Check if a string is entirely made of the same substring
Minor Revision with suggestion of an alternative proof by reviewer
Extension of 2-adic valuation to the real numbers
Solving polynominals equations (relationship of roots)
Quadratic equation - $alpha$ and $beta$ RootsTechnique to simplify algebraic calculations on roots of polynomialInterval of Polynomial Root FindingFind $alpha^3 + beta^3$ which are roots of a quadratic equation.sum and product of roots of polynomials: finding equations for rootsSolving two Cubic Equation on their Roots.Finding an equation with related rootsFind the roots of $acx^2-b(c+a)x+(c+a)^2=0$If $3x^2-6x+p=0$ has roots $alpha$ and $beta$, then find a quadratic with roots $(alpha+beta)/alpha$ and $(alpha+beta)/beta$Find the roots of $3x^3-4x-8$
$begingroup$
The roots of $x^3-4x^2+x+6$ are $alpha$, $beta$, and $omega$.
Find (evaluate):
$$frac{alpha+beta}{omega}+frac{alpha+omega}{beta}+frac{beta+omega}{alpha}$$
So far I have found:
$$alpha+beta+omega=frac{-b}{a} = 4 \
alphabeta+betaomega+alphaomega=frac{c}{a} = 1 \
alpha×beta×omega=frac{-d}{a} = -6$$
And evaluated the above fractions creating
$$frac{alpha^2beta+alphabeta^2+alpha^2omega+alphaomega^2+beta^2omega+betaomega^2}{alphabetaomega}$$
I don't know how to continue evaluating the question.
Note:
The answer I have been given is $-dfrac{11}{3}$
polynomials roots
$endgroup$
add a comment |
$begingroup$
The roots of $x^3-4x^2+x+6$ are $alpha$, $beta$, and $omega$.
Find (evaluate):
$$frac{alpha+beta}{omega}+frac{alpha+omega}{beta}+frac{beta+omega}{alpha}$$
So far I have found:
$$alpha+beta+omega=frac{-b}{a} = 4 \
alphabeta+betaomega+alphaomega=frac{c}{a} = 1 \
alpha×beta×omega=frac{-d}{a} = -6$$
And evaluated the above fractions creating
$$frac{alpha^2beta+alphabeta^2+alpha^2omega+alphaomega^2+beta^2omega+betaomega^2}{alphabetaomega}$$
I don't know how to continue evaluating the question.
Note:
The answer I have been given is $-dfrac{11}{3}$
polynomials roots
$endgroup$
1
$begingroup$
For latex, you use instead of /.
$endgroup$
– BadAtGeometry
1 hour ago
add a comment |
$begingroup$
The roots of $x^3-4x^2+x+6$ are $alpha$, $beta$, and $omega$.
Find (evaluate):
$$frac{alpha+beta}{omega}+frac{alpha+omega}{beta}+frac{beta+omega}{alpha}$$
So far I have found:
$$alpha+beta+omega=frac{-b}{a} = 4 \
alphabeta+betaomega+alphaomega=frac{c}{a} = 1 \
alpha×beta×omega=frac{-d}{a} = -6$$
And evaluated the above fractions creating
$$frac{alpha^2beta+alphabeta^2+alpha^2omega+alphaomega^2+beta^2omega+betaomega^2}{alphabetaomega}$$
I don't know how to continue evaluating the question.
Note:
The answer I have been given is $-dfrac{11}{3}$
polynomials roots
$endgroup$
The roots of $x^3-4x^2+x+6$ are $alpha$, $beta$, and $omega$.
Find (evaluate):
$$frac{alpha+beta}{omega}+frac{alpha+omega}{beta}+frac{beta+omega}{alpha}$$
So far I have found:
$$alpha+beta+omega=frac{-b}{a} = 4 \
alphabeta+betaomega+alphaomega=frac{c}{a} = 1 \
alpha×beta×omega=frac{-d}{a} = -6$$
And evaluated the above fractions creating
$$frac{alpha^2beta+alphabeta^2+alpha^2omega+alphaomega^2+beta^2omega+betaomega^2}{alphabetaomega}$$
I don't know how to continue evaluating the question.
Note:
The answer I have been given is $-dfrac{11}{3}$
polynomials roots
polynomials roots
edited 55 mins ago
Lee David Chung Lin
4,51851342
4,51851342
asked 1 hour ago
Alex Alex
236
236
1
$begingroup$
For latex, you use instead of /.
$endgroup$
– BadAtGeometry
1 hour ago
add a comment |
1
$begingroup$
For latex, you use instead of /.
$endgroup$
– BadAtGeometry
1 hour ago
1
1
$begingroup$
For latex, you use instead of /.
$endgroup$
– BadAtGeometry
1 hour ago
$begingroup$
For latex, you use instead of /.
$endgroup$
– BadAtGeometry
1 hour ago
add a comment |
4 Answers
4
active
oldest
votes
$begingroup$
$$frac{alpha + beta}{omega} + frac{beta + omega}{alpha} + frac{alpha + omega}{beta}$$
$$= frac{alpha + beta + omega - omega}{omega} + frac{beta + omega + alpha - alpha}{alpha} + frac{alpha + omega + beta - beta}{beta}$$
$$ = (alpha + beta + omega) left(frac{1}{alpha} + frac{1}{beta} + frac{1}{omega}right) - 3$$
$$ = (alpha + beta + omega) left(frac{betaomega}{alphabetaomega} + frac{alphaomega}{alphabetaomega} + frac{alphabeta}{alphabetaomega}right) - 3$$
$$ = frac{alpha + beta + omega}{alphabetaomega}(betaomega + alphaomega + alphabeta) - 3$$
I think you should be able to take it from there.
$endgroup$
add a comment |
$begingroup$
Hint: We can write $$frac{4-w}{w}+frac{4-beta}{beta}+frac{4-alpha}{alpha}$$ and this is $$4left(frac{alphabeta+alpha w+wbeta}{alpha beta w}right)-3$$ and this is $$-frac{2}{3}left(1-beta w-alpha w+alpha w+beta wright)$$
This simplifies to $$-frac{2}{3}-3=-frac{11}{3}$$
$endgroup$
add a comment |
$begingroup$
Alternatively, you can solve the equation:
$$x^3-4x^2+x+6=0 Rightarrow (x+1)(x-2)(x-3)=0 Rightarrow \
alpha =-1, beta =2,omega=3.$$
Hence:
$$frac{alpha + beta}{omega} + frac{beta + omega}{alpha} + frac{alpha + omega}{beta}=\
frac{-1+ 2}{3} + frac{2 + 3}{-1} + frac{-1 + 3}{2}=\
frac13-5+1=\
-frac{11}{3}.$$
$endgroup$
add a comment |
$begingroup$
That follows from your results, since we get: $dfrac{4-omega}{omega}+dfrac{4-beta}{beta}+dfrac{4-alpha}{alpha}=dfrac{4(omegabeta+omega alpha+betaalpha)-3omegabetaalpha}{omega beta alpha}=dfrac{4+18}{-6}=-dfrac{11}3$.
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3204072%2fsolving-polynominals-equations-relationship-of-roots%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$$frac{alpha + beta}{omega} + frac{beta + omega}{alpha} + frac{alpha + omega}{beta}$$
$$= frac{alpha + beta + omega - omega}{omega} + frac{beta + omega + alpha - alpha}{alpha} + frac{alpha + omega + beta - beta}{beta}$$
$$ = (alpha + beta + omega) left(frac{1}{alpha} + frac{1}{beta} + frac{1}{omega}right) - 3$$
$$ = (alpha + beta + omega) left(frac{betaomega}{alphabetaomega} + frac{alphaomega}{alphabetaomega} + frac{alphabeta}{alphabetaomega}right) - 3$$
$$ = frac{alpha + beta + omega}{alphabetaomega}(betaomega + alphaomega + alphabeta) - 3$$
I think you should be able to take it from there.
$endgroup$
add a comment |
$begingroup$
$$frac{alpha + beta}{omega} + frac{beta + omega}{alpha} + frac{alpha + omega}{beta}$$
$$= frac{alpha + beta + omega - omega}{omega} + frac{beta + omega + alpha - alpha}{alpha} + frac{alpha + omega + beta - beta}{beta}$$
$$ = (alpha + beta + omega) left(frac{1}{alpha} + frac{1}{beta} + frac{1}{omega}right) - 3$$
$$ = (alpha + beta + omega) left(frac{betaomega}{alphabetaomega} + frac{alphaomega}{alphabetaomega} + frac{alphabeta}{alphabetaomega}right) - 3$$
$$ = frac{alpha + beta + omega}{alphabetaomega}(betaomega + alphaomega + alphabeta) - 3$$
I think you should be able to take it from there.
$endgroup$
add a comment |
$begingroup$
$$frac{alpha + beta}{omega} + frac{beta + omega}{alpha} + frac{alpha + omega}{beta}$$
$$= frac{alpha + beta + omega - omega}{omega} + frac{beta + omega + alpha - alpha}{alpha} + frac{alpha + omega + beta - beta}{beta}$$
$$ = (alpha + beta + omega) left(frac{1}{alpha} + frac{1}{beta} + frac{1}{omega}right) - 3$$
$$ = (alpha + beta + omega) left(frac{betaomega}{alphabetaomega} + frac{alphaomega}{alphabetaomega} + frac{alphabeta}{alphabetaomega}right) - 3$$
$$ = frac{alpha + beta + omega}{alphabetaomega}(betaomega + alphaomega + alphabeta) - 3$$
I think you should be able to take it from there.
$endgroup$
$$frac{alpha + beta}{omega} + frac{beta + omega}{alpha} + frac{alpha + omega}{beta}$$
$$= frac{alpha + beta + omega - omega}{omega} + frac{beta + omega + alpha - alpha}{alpha} + frac{alpha + omega + beta - beta}{beta}$$
$$ = (alpha + beta + omega) left(frac{1}{alpha} + frac{1}{beta} + frac{1}{omega}right) - 3$$
$$ = (alpha + beta + omega) left(frac{betaomega}{alphabetaomega} + frac{alphaomega}{alphabetaomega} + frac{alphabeta}{alphabetaomega}right) - 3$$
$$ = frac{alpha + beta + omega}{alphabetaomega}(betaomega + alphaomega + alphabeta) - 3$$
I think you should be able to take it from there.
answered 1 hour ago
user1952500user1952500
1,5451016
1,5451016
add a comment |
add a comment |
$begingroup$
Hint: We can write $$frac{4-w}{w}+frac{4-beta}{beta}+frac{4-alpha}{alpha}$$ and this is $$4left(frac{alphabeta+alpha w+wbeta}{alpha beta w}right)-3$$ and this is $$-frac{2}{3}left(1-beta w-alpha w+alpha w+beta wright)$$
This simplifies to $$-frac{2}{3}-3=-frac{11}{3}$$
$endgroup$
add a comment |
$begingroup$
Hint: We can write $$frac{4-w}{w}+frac{4-beta}{beta}+frac{4-alpha}{alpha}$$ and this is $$4left(frac{alphabeta+alpha w+wbeta}{alpha beta w}right)-3$$ and this is $$-frac{2}{3}left(1-beta w-alpha w+alpha w+beta wright)$$
This simplifies to $$-frac{2}{3}-3=-frac{11}{3}$$
$endgroup$
add a comment |
$begingroup$
Hint: We can write $$frac{4-w}{w}+frac{4-beta}{beta}+frac{4-alpha}{alpha}$$ and this is $$4left(frac{alphabeta+alpha w+wbeta}{alpha beta w}right)-3$$ and this is $$-frac{2}{3}left(1-beta w-alpha w+alpha w+beta wright)$$
This simplifies to $$-frac{2}{3}-3=-frac{11}{3}$$
$endgroup$
Hint: We can write $$frac{4-w}{w}+frac{4-beta}{beta}+frac{4-alpha}{alpha}$$ and this is $$4left(frac{alphabeta+alpha w+wbeta}{alpha beta w}right)-3$$ and this is $$-frac{2}{3}left(1-beta w-alpha w+alpha w+beta wright)$$
This simplifies to $$-frac{2}{3}-3=-frac{11}{3}$$
answered 1 hour ago
Dr. Sonnhard GraubnerDr. Sonnhard Graubner
79.7k42867
79.7k42867
add a comment |
add a comment |
$begingroup$
Alternatively, you can solve the equation:
$$x^3-4x^2+x+6=0 Rightarrow (x+1)(x-2)(x-3)=0 Rightarrow \
alpha =-1, beta =2,omega=3.$$
Hence:
$$frac{alpha + beta}{omega} + frac{beta + omega}{alpha} + frac{alpha + omega}{beta}=\
frac{-1+ 2}{3} + frac{2 + 3}{-1} + frac{-1 + 3}{2}=\
frac13-5+1=\
-frac{11}{3}.$$
$endgroup$
add a comment |
$begingroup$
Alternatively, you can solve the equation:
$$x^3-4x^2+x+6=0 Rightarrow (x+1)(x-2)(x-3)=0 Rightarrow \
alpha =-1, beta =2,omega=3.$$
Hence:
$$frac{alpha + beta}{omega} + frac{beta + omega}{alpha} + frac{alpha + omega}{beta}=\
frac{-1+ 2}{3} + frac{2 + 3}{-1} + frac{-1 + 3}{2}=\
frac13-5+1=\
-frac{11}{3}.$$
$endgroup$
add a comment |
$begingroup$
Alternatively, you can solve the equation:
$$x^3-4x^2+x+6=0 Rightarrow (x+1)(x-2)(x-3)=0 Rightarrow \
alpha =-1, beta =2,omega=3.$$
Hence:
$$frac{alpha + beta}{omega} + frac{beta + omega}{alpha} + frac{alpha + omega}{beta}=\
frac{-1+ 2}{3} + frac{2 + 3}{-1} + frac{-1 + 3}{2}=\
frac13-5+1=\
-frac{11}{3}.$$
$endgroup$
Alternatively, you can solve the equation:
$$x^3-4x^2+x+6=0 Rightarrow (x+1)(x-2)(x-3)=0 Rightarrow \
alpha =-1, beta =2,omega=3.$$
Hence:
$$frac{alpha + beta}{omega} + frac{beta + omega}{alpha} + frac{alpha + omega}{beta}=\
frac{-1+ 2}{3} + frac{2 + 3}{-1} + frac{-1 + 3}{2}=\
frac13-5+1=\
-frac{11}{3}.$$
answered 31 mins ago
farruhotafarruhota
22.5k2942
22.5k2942
add a comment |
add a comment |
$begingroup$
That follows from your results, since we get: $dfrac{4-omega}{omega}+dfrac{4-beta}{beta}+dfrac{4-alpha}{alpha}=dfrac{4(omegabeta+omega alpha+betaalpha)-3omegabetaalpha}{omega beta alpha}=dfrac{4+18}{-6}=-dfrac{11}3$.
$endgroup$
add a comment |
$begingroup$
That follows from your results, since we get: $dfrac{4-omega}{omega}+dfrac{4-beta}{beta}+dfrac{4-alpha}{alpha}=dfrac{4(omegabeta+omega alpha+betaalpha)-3omegabetaalpha}{omega beta alpha}=dfrac{4+18}{-6}=-dfrac{11}3$.
$endgroup$
add a comment |
$begingroup$
That follows from your results, since we get: $dfrac{4-omega}{omega}+dfrac{4-beta}{beta}+dfrac{4-alpha}{alpha}=dfrac{4(omegabeta+omega alpha+betaalpha)-3omegabetaalpha}{omega beta alpha}=dfrac{4+18}{-6}=-dfrac{11}3$.
$endgroup$
That follows from your results, since we get: $dfrac{4-omega}{omega}+dfrac{4-beta}{beta}+dfrac{4-alpha}{alpha}=dfrac{4(omegabeta+omega alpha+betaalpha)-3omegabetaalpha}{omega beta alpha}=dfrac{4+18}{-6}=-dfrac{11}3$.
answered 1 hour ago
Chris CusterChris Custer
14.7k3827
14.7k3827
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3204072%2fsolving-polynominals-equations-relationship-of-roots%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
For latex, you use instead of /.
$endgroup$
– BadAtGeometry
1 hour ago