Apply MapThread to all but one variableHow do you efficiently return all of a List but one element?All values...
Can someone publish a story that happened to you?
Do I have an "anti-research" personality?
A Note on N!
Rivers without rain
Betweenness centrality formula
Minor Revision with suggestion of an alternative proof by reviewer
Can I grease a crank spindle/bracket without disassembling the crank set?
How can Republicans who favour free markets, consistently express anger when they don't like the outcome of that choice?
Check if a string is entirely made of the same substring
On The Origin of Dissonant Chords
Can SQL Server create collisions in system generated constraint names?
What's the polite way to say "I need to urinate"?
Why does Mind Blank stop the Feeblemind spell?
Was there a Viking Exchange as well as a Columbian one?
What happens in the secondary winding if there's no spark plug connected?
Map of water taps to fill bottles
How can the Githyanki Supreme Commander move while insubstantial?
How can I practically buy stocks?
What are the steps to solving this definite integral?
Are there physical dangers to preparing a prepared piano?
Coordinate my way to the name of the (video) game
How do I reattach a shelf to the wall when it ripped out of the wall?
"Hidden" theta-term in Hamiltonian formulation of Yang-Mills theory
How could Tony Stark make this in Endgame?
Apply MapThread to all but one variable
How do you efficiently return all of a List but one element?All values for a function with two arguments without OuterEfficiently finding the maximum value of a column in a matrixnested use of Apply/Map/MapThread in pure functionsMapThread AlternativesFinding neighbors from listMapThread problemapply binary operation to all adjacent pairsFlip sign of one variable in listFind numbers from Mean, Variance and Correlation coefficient
$begingroup$
I would like to know what is the most efficient to implement the following computation. Given three lists
a = {a_1,a_2, a_3, …, a_n}
b = {b_1,b_2, b_3, …, b_n}
c = {c_1,c_2, c_3, …, c_n}
and a function $f(x_1,x_2,x_3)$, obtain
f(a_1,b_1,c_1) f(a_1,b_1,c_2) ..... f(a_1,b_1,c_n)
f(a_2,b_2,c_1) f(a_2,b_2,c_2) ..... f(a_2,b_2,c_n)
..... ..... ..... .....
f(a_n,b_n,c_1) f(a_n,b_n,c_2) ..... f(a_n,b_n,c_n)
I cannot find a solution not using For
.
list-manipulation
$endgroup$
add a comment |
$begingroup$
I would like to know what is the most efficient to implement the following computation. Given three lists
a = {a_1,a_2, a_3, …, a_n}
b = {b_1,b_2, b_3, …, b_n}
c = {c_1,c_2, c_3, …, c_n}
and a function $f(x_1,x_2,x_3)$, obtain
f(a_1,b_1,c_1) f(a_1,b_1,c_2) ..... f(a_1,b_1,c_n)
f(a_2,b_2,c_1) f(a_2,b_2,c_2) ..... f(a_2,b_2,c_n)
..... ..... ..... .....
f(a_n,b_n,c_1) f(a_n,b_n,c_2) ..... f(a_n,b_n,c_n)
I cannot find a solution not using For
.
list-manipulation
$endgroup$
add a comment |
$begingroup$
I would like to know what is the most efficient to implement the following computation. Given three lists
a = {a_1,a_2, a_3, …, a_n}
b = {b_1,b_2, b_3, …, b_n}
c = {c_1,c_2, c_3, …, c_n}
and a function $f(x_1,x_2,x_3)$, obtain
f(a_1,b_1,c_1) f(a_1,b_1,c_2) ..... f(a_1,b_1,c_n)
f(a_2,b_2,c_1) f(a_2,b_2,c_2) ..... f(a_2,b_2,c_n)
..... ..... ..... .....
f(a_n,b_n,c_1) f(a_n,b_n,c_2) ..... f(a_n,b_n,c_n)
I cannot find a solution not using For
.
list-manipulation
$endgroup$
I would like to know what is the most efficient to implement the following computation. Given three lists
a = {a_1,a_2, a_3, …, a_n}
b = {b_1,b_2, b_3, …, b_n}
c = {c_1,c_2, c_3, …, c_n}
and a function $f(x_1,x_2,x_3)$, obtain
f(a_1,b_1,c_1) f(a_1,b_1,c_2) ..... f(a_1,b_1,c_n)
f(a_2,b_2,c_1) f(a_2,b_2,c_2) ..... f(a_2,b_2,c_n)
..... ..... ..... .....
f(a_n,b_n,c_1) f(a_n,b_n,c_2) ..... f(a_n,b_n,c_n)
I cannot find a solution not using For
.
list-manipulation
list-manipulation
edited 2 hours ago
corey979
20.9k64382
20.9k64382
asked 2 hours ago
SmerdjakovSmerdjakov
1305
1305
add a comment |
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
Here's one way to do it with Outer
:
n = 3;
l1 = Array[a, n];
l2 = Array[b, n];
l3 = Array[c, n];
Outer[
f[#1[[1]], #1[[2]], #2] &,
Transpose @ {l1, l2},
l3,
1
]
Out[25]= {{f[a[1], b[1], c[1]], f[a[1], b[1], c[2]],
f[a[1], b[1], c[3]]}, {f[a[2], b[2], c[1]], f[a[2], b[2], c[2]],
f[a[2], b[2], c[3]]}, {f[a[3], b[3], c[1]], f[a[3], b[3], c[2]],
f[a[3], b[3], c[3]]}}
$endgroup$
1
$begingroup$
OrOuter[f[Sequence @@ #1, #2] &, Transpose@{l1, l2}, l3, 1]
so you don't need to unravel#1
manually.
$endgroup$
– Roman
2 hours ago
add a comment |
$begingroup$
a = {a1, a2, a3, a4, a5};
b = {b1, b2, b3, b4, b5};
c = {c1, c2, c3, c4, c5};
Table[f[a[[j]], b[[j]], c[[k]]], {j, 1, 5}, {k, 1, 5}]
$endgroup$
add a comment |
$begingroup$
Another possibility is to use the 3-arg version of Thread
. With Sjoerd's example:
n = 3;
l1 = Array[a,n];
l2 = Array[b,n];
l3 = Array[c,n];
Using Thread
:
Thread /@ Thread[f[l1, l2, l3], List, 2]
{{f[a[1], b[1], c[1]], f[a[1], b[1], c[2]],
f[a[1], b[1], c[3]]}, {f[a[2], b[2], c[1]], f[a[2], b[2], c[2]],
f[a[2], b[2], c[3]]}, {f[a[3], b[3], c[1]], f[a[3], b[3], c[2]],
f[a[3], b[3], c[3]]}}
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "387"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f197144%2fapply-mapthread-to-all-but-one-variable%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Here's one way to do it with Outer
:
n = 3;
l1 = Array[a, n];
l2 = Array[b, n];
l3 = Array[c, n];
Outer[
f[#1[[1]], #1[[2]], #2] &,
Transpose @ {l1, l2},
l3,
1
]
Out[25]= {{f[a[1], b[1], c[1]], f[a[1], b[1], c[2]],
f[a[1], b[1], c[3]]}, {f[a[2], b[2], c[1]], f[a[2], b[2], c[2]],
f[a[2], b[2], c[3]]}, {f[a[3], b[3], c[1]], f[a[3], b[3], c[2]],
f[a[3], b[3], c[3]]}}
$endgroup$
1
$begingroup$
OrOuter[f[Sequence @@ #1, #2] &, Transpose@{l1, l2}, l3, 1]
so you don't need to unravel#1
manually.
$endgroup$
– Roman
2 hours ago
add a comment |
$begingroup$
Here's one way to do it with Outer
:
n = 3;
l1 = Array[a, n];
l2 = Array[b, n];
l3 = Array[c, n];
Outer[
f[#1[[1]], #1[[2]], #2] &,
Transpose @ {l1, l2},
l3,
1
]
Out[25]= {{f[a[1], b[1], c[1]], f[a[1], b[1], c[2]],
f[a[1], b[1], c[3]]}, {f[a[2], b[2], c[1]], f[a[2], b[2], c[2]],
f[a[2], b[2], c[3]]}, {f[a[3], b[3], c[1]], f[a[3], b[3], c[2]],
f[a[3], b[3], c[3]]}}
$endgroup$
1
$begingroup$
OrOuter[f[Sequence @@ #1, #2] &, Transpose@{l1, l2}, l3, 1]
so you don't need to unravel#1
manually.
$endgroup$
– Roman
2 hours ago
add a comment |
$begingroup$
Here's one way to do it with Outer
:
n = 3;
l1 = Array[a, n];
l2 = Array[b, n];
l3 = Array[c, n];
Outer[
f[#1[[1]], #1[[2]], #2] &,
Transpose @ {l1, l2},
l3,
1
]
Out[25]= {{f[a[1], b[1], c[1]], f[a[1], b[1], c[2]],
f[a[1], b[1], c[3]]}, {f[a[2], b[2], c[1]], f[a[2], b[2], c[2]],
f[a[2], b[2], c[3]]}, {f[a[3], b[3], c[1]], f[a[3], b[3], c[2]],
f[a[3], b[3], c[3]]}}
$endgroup$
Here's one way to do it with Outer
:
n = 3;
l1 = Array[a, n];
l2 = Array[b, n];
l3 = Array[c, n];
Outer[
f[#1[[1]], #1[[2]], #2] &,
Transpose @ {l1, l2},
l3,
1
]
Out[25]= {{f[a[1], b[1], c[1]], f[a[1], b[1], c[2]],
f[a[1], b[1], c[3]]}, {f[a[2], b[2], c[1]], f[a[2], b[2], c[2]],
f[a[2], b[2], c[3]]}, {f[a[3], b[3], c[1]], f[a[3], b[3], c[2]],
f[a[3], b[3], c[3]]}}
answered 2 hours ago
Sjoerd SmitSjoerd Smit
4,610817
4,610817
1
$begingroup$
OrOuter[f[Sequence @@ #1, #2] &, Transpose@{l1, l2}, l3, 1]
so you don't need to unravel#1
manually.
$endgroup$
– Roman
2 hours ago
add a comment |
1
$begingroup$
OrOuter[f[Sequence @@ #1, #2] &, Transpose@{l1, l2}, l3, 1]
so you don't need to unravel#1
manually.
$endgroup$
– Roman
2 hours ago
1
1
$begingroup$
Or
Outer[f[Sequence @@ #1, #2] &, Transpose@{l1, l2}, l3, 1]
so you don't need to unravel #1
manually.$endgroup$
– Roman
2 hours ago
$begingroup$
Or
Outer[f[Sequence @@ #1, #2] &, Transpose@{l1, l2}, l3, 1]
so you don't need to unravel #1
manually.$endgroup$
– Roman
2 hours ago
add a comment |
$begingroup$
a = {a1, a2, a3, a4, a5};
b = {b1, b2, b3, b4, b5};
c = {c1, c2, c3, c4, c5};
Table[f[a[[j]], b[[j]], c[[k]]], {j, 1, 5}, {k, 1, 5}]
$endgroup$
add a comment |
$begingroup$
a = {a1, a2, a3, a4, a5};
b = {b1, b2, b3, b4, b5};
c = {c1, c2, c3, c4, c5};
Table[f[a[[j]], b[[j]], c[[k]]], {j, 1, 5}, {k, 1, 5}]
$endgroup$
add a comment |
$begingroup$
a = {a1, a2, a3, a4, a5};
b = {b1, b2, b3, b4, b5};
c = {c1, c2, c3, c4, c5};
Table[f[a[[j]], b[[j]], c[[k]]], {j, 1, 5}, {k, 1, 5}]
$endgroup$
a = {a1, a2, a3, a4, a5};
b = {b1, b2, b3, b4, b5};
c = {c1, c2, c3, c4, c5};
Table[f[a[[j]], b[[j]], c[[k]]], {j, 1, 5}, {k, 1, 5}]
answered 2 hours ago
corey979corey979
20.9k64382
20.9k64382
add a comment |
add a comment |
$begingroup$
Another possibility is to use the 3-arg version of Thread
. With Sjoerd's example:
n = 3;
l1 = Array[a,n];
l2 = Array[b,n];
l3 = Array[c,n];
Using Thread
:
Thread /@ Thread[f[l1, l2, l3], List, 2]
{{f[a[1], b[1], c[1]], f[a[1], b[1], c[2]],
f[a[1], b[1], c[3]]}, {f[a[2], b[2], c[1]], f[a[2], b[2], c[2]],
f[a[2], b[2], c[3]]}, {f[a[3], b[3], c[1]], f[a[3], b[3], c[2]],
f[a[3], b[3], c[3]]}}
$endgroup$
add a comment |
$begingroup$
Another possibility is to use the 3-arg version of Thread
. With Sjoerd's example:
n = 3;
l1 = Array[a,n];
l2 = Array[b,n];
l3 = Array[c,n];
Using Thread
:
Thread /@ Thread[f[l1, l2, l3], List, 2]
{{f[a[1], b[1], c[1]], f[a[1], b[1], c[2]],
f[a[1], b[1], c[3]]}, {f[a[2], b[2], c[1]], f[a[2], b[2], c[2]],
f[a[2], b[2], c[3]]}, {f[a[3], b[3], c[1]], f[a[3], b[3], c[2]],
f[a[3], b[3], c[3]]}}
$endgroup$
add a comment |
$begingroup$
Another possibility is to use the 3-arg version of Thread
. With Sjoerd's example:
n = 3;
l1 = Array[a,n];
l2 = Array[b,n];
l3 = Array[c,n];
Using Thread
:
Thread /@ Thread[f[l1, l2, l3], List, 2]
{{f[a[1], b[1], c[1]], f[a[1], b[1], c[2]],
f[a[1], b[1], c[3]]}, {f[a[2], b[2], c[1]], f[a[2], b[2], c[2]],
f[a[2], b[2], c[3]]}, {f[a[3], b[3], c[1]], f[a[3], b[3], c[2]],
f[a[3], b[3], c[3]]}}
$endgroup$
Another possibility is to use the 3-arg version of Thread
. With Sjoerd's example:
n = 3;
l1 = Array[a,n];
l2 = Array[b,n];
l3 = Array[c,n];
Using Thread
:
Thread /@ Thread[f[l1, l2, l3], List, 2]
{{f[a[1], b[1], c[1]], f[a[1], b[1], c[2]],
f[a[1], b[1], c[3]]}, {f[a[2], b[2], c[1]], f[a[2], b[2], c[2]],
f[a[2], b[2], c[3]]}, {f[a[3], b[3], c[1]], f[a[3], b[3], c[2]],
f[a[3], b[3], c[3]]}}
answered 1 hour ago
Carl WollCarl Woll
75.9k3100198
75.9k3100198
add a comment |
add a comment |
Thanks for contributing an answer to Mathematica Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f197144%2fapply-mapthread-to-all-but-one-variable%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown