What is the purpose or proof behind chain rule?Chain Rule applied to Trig Functionschain rule with manual...
Official degrees of earth’s rotation per day
How to terminate ping <dest> &
How do you talk to someone whose loved one is dying?
Describing a chess game in a novel
What is "focus distance lower/upper" and how is it different from depth of field?
Knife as defense against stray dogs
Why does energy conservation give me the wrong answer in this inelastic collision problem?
I got the following comment from a reputed math journal. What does it mean?
The German vowel “a” changes to the English “i”
Professor being mistaken for a grad student
Violin - Can double stops be played when the strings are not next to each other?
Tikz picture of two mathematical functions
World War I as a war of liberals against authoritarians?
How to make healing in an exploration game interesting
Print a physical multiplication table
Recruiter wants very extensive technical details about all of my previous work
Most cost effective thermostat setting: consistent temperature vs. lowest temperature possible
How could a scammer know the apps on my phone / iTunes account?
Aluminum electrolytic or ceramic capacitors for linear regulator input and output?
What exactly is this small puffer fish doing and how did it manage to accomplish such a feat?
Is "upgrade" the right word to use in this context?
Why did it take so long to abandon sail after steamships were demonstrated?
et qui - how do you really understand that kind of phraseology?
Meme-controlled people
What is the purpose or proof behind chain rule?
Chain Rule applied to Trig Functionschain rule with manual substitutionchain rule or product ruleHelp understand chain rule derivativeThe chain rule problem with second compositeWhy is the chain rule applied to derivatives of trigonometric functions?Proof involving multivariable chain ruleChain rule to differentiate $sin ^2frac{x}{2}$Partial Derivative and Chain RuleDifferentiate without using chain rule in 5 steps
$begingroup$
For example, take a function $sin x$. The derivative of this function is $cos x$.
The chain rule states that $frac{d}{dx} (f(g(x)))$ is $frac{d}{dx} g(x) frac{d}{dx} (f(g(x)))$. Again going back to the example above, now instead of $sin x$ lets take $sin 2x$.
Differentiating it without chain rule, we get $cos 2x$. However, using chain rule, we get $2cos 2x$.
So now the problem is that I don't see the purpose behind the chain rule. Why should $sin 2x$ be $2cos 2x$?
Is there any proof behind this chain rule? I really need to know as I getting many questions wromg without using the chain rule.
calculus derivatives soft-question
$endgroup$
|
show 9 more comments
$begingroup$
For example, take a function $sin x$. The derivative of this function is $cos x$.
The chain rule states that $frac{d}{dx} (f(g(x)))$ is $frac{d}{dx} g(x) frac{d}{dx} (f(g(x)))$. Again going back to the example above, now instead of $sin x$ lets take $sin 2x$.
Differentiating it without chain rule, we get $cos 2x$. However, using chain rule, we get $2cos 2x$.
So now the problem is that I don't see the purpose behind the chain rule. Why should $sin 2x$ be $2cos 2x$?
Is there any proof behind this chain rule? I really need to know as I getting many questions wromg without using the chain rule.
calculus derivatives soft-question
$endgroup$
1
$begingroup$
" Why should $sin 2x;$ be $;2cos 2x$?" No, it isn't: its derivative is. Why? Because that's what we get from theorems or from the definition of derivative as limit. That's all. And yes: of course there is proof of the chain rule: any decent calculus book includes it.
$endgroup$
– DonAntonio
45 mins ago
$begingroup$
In your post, when you are 'differentiating without chain rule', you are differentiating $sin 2x$ with respect to $2x$, rather than with respect to $x$.
$endgroup$
– Minus One-Twelfth
44 mins ago
$begingroup$
@DonAntonio what i meant was derivative. I was just writing that in short. U shoukd be able to understand that as this whole post is about derivative
$endgroup$
– rash
40 mins ago
$begingroup$
@MinusOne-Twelfth whether i am taking with respect to 2x or x, the derivative value isnt the same and thats my confusion. For example derivative of $sin 2x$ where $piover 2$. Differentiating with respect to 2x is -1 & with respect to x is -2. Why?
$endgroup$
– rash
36 mins ago
1
$begingroup$
@littleO I didnt say it was correct. It is just my confusion of why should it not be like that and should be $2cos x$
$endgroup$
– rash
35 mins ago
|
show 9 more comments
$begingroup$
For example, take a function $sin x$. The derivative of this function is $cos x$.
The chain rule states that $frac{d}{dx} (f(g(x)))$ is $frac{d}{dx} g(x) frac{d}{dx} (f(g(x)))$. Again going back to the example above, now instead of $sin x$ lets take $sin 2x$.
Differentiating it without chain rule, we get $cos 2x$. However, using chain rule, we get $2cos 2x$.
So now the problem is that I don't see the purpose behind the chain rule. Why should $sin 2x$ be $2cos 2x$?
Is there any proof behind this chain rule? I really need to know as I getting many questions wromg without using the chain rule.
calculus derivatives soft-question
$endgroup$
For example, take a function $sin x$. The derivative of this function is $cos x$.
The chain rule states that $frac{d}{dx} (f(g(x)))$ is $frac{d}{dx} g(x) frac{d}{dx} (f(g(x)))$. Again going back to the example above, now instead of $sin x$ lets take $sin 2x$.
Differentiating it without chain rule, we get $cos 2x$. However, using chain rule, we get $2cos 2x$.
So now the problem is that I don't see the purpose behind the chain rule. Why should $sin 2x$ be $2cos 2x$?
Is there any proof behind this chain rule? I really need to know as I getting many questions wromg without using the chain rule.
calculus derivatives soft-question
calculus derivatives soft-question
asked 47 mins ago
rashrash
48814
48814
1
$begingroup$
" Why should $sin 2x;$ be $;2cos 2x$?" No, it isn't: its derivative is. Why? Because that's what we get from theorems or from the definition of derivative as limit. That's all. And yes: of course there is proof of the chain rule: any decent calculus book includes it.
$endgroup$
– DonAntonio
45 mins ago
$begingroup$
In your post, when you are 'differentiating without chain rule', you are differentiating $sin 2x$ with respect to $2x$, rather than with respect to $x$.
$endgroup$
– Minus One-Twelfth
44 mins ago
$begingroup$
@DonAntonio what i meant was derivative. I was just writing that in short. U shoukd be able to understand that as this whole post is about derivative
$endgroup$
– rash
40 mins ago
$begingroup$
@MinusOne-Twelfth whether i am taking with respect to 2x or x, the derivative value isnt the same and thats my confusion. For example derivative of $sin 2x$ where $piover 2$. Differentiating with respect to 2x is -1 & with respect to x is -2. Why?
$endgroup$
– rash
36 mins ago
1
$begingroup$
@littleO I didnt say it was correct. It is just my confusion of why should it not be like that and should be $2cos x$
$endgroup$
– rash
35 mins ago
|
show 9 more comments
1
$begingroup$
" Why should $sin 2x;$ be $;2cos 2x$?" No, it isn't: its derivative is. Why? Because that's what we get from theorems or from the definition of derivative as limit. That's all. And yes: of course there is proof of the chain rule: any decent calculus book includes it.
$endgroup$
– DonAntonio
45 mins ago
$begingroup$
In your post, when you are 'differentiating without chain rule', you are differentiating $sin 2x$ with respect to $2x$, rather than with respect to $x$.
$endgroup$
– Minus One-Twelfth
44 mins ago
$begingroup$
@DonAntonio what i meant was derivative. I was just writing that in short. U shoukd be able to understand that as this whole post is about derivative
$endgroup$
– rash
40 mins ago
$begingroup$
@MinusOne-Twelfth whether i am taking with respect to 2x or x, the derivative value isnt the same and thats my confusion. For example derivative of $sin 2x$ where $piover 2$. Differentiating with respect to 2x is -1 & with respect to x is -2. Why?
$endgroup$
– rash
36 mins ago
1
$begingroup$
@littleO I didnt say it was correct. It is just my confusion of why should it not be like that and should be $2cos x$
$endgroup$
– rash
35 mins ago
1
1
$begingroup$
" Why should $sin 2x;$ be $;2cos 2x$?" No, it isn't: its derivative is. Why? Because that's what we get from theorems or from the definition of derivative as limit. That's all. And yes: of course there is proof of the chain rule: any decent calculus book includes it.
$endgroup$
– DonAntonio
45 mins ago
$begingroup$
" Why should $sin 2x;$ be $;2cos 2x$?" No, it isn't: its derivative is. Why? Because that's what we get from theorems or from the definition of derivative as limit. That's all. And yes: of course there is proof of the chain rule: any decent calculus book includes it.
$endgroup$
– DonAntonio
45 mins ago
$begingroup$
In your post, when you are 'differentiating without chain rule', you are differentiating $sin 2x$ with respect to $2x$, rather than with respect to $x$.
$endgroup$
– Minus One-Twelfth
44 mins ago
$begingroup$
In your post, when you are 'differentiating without chain rule', you are differentiating $sin 2x$ with respect to $2x$, rather than with respect to $x$.
$endgroup$
– Minus One-Twelfth
44 mins ago
$begingroup$
@DonAntonio what i meant was derivative. I was just writing that in short. U shoukd be able to understand that as this whole post is about derivative
$endgroup$
– rash
40 mins ago
$begingroup$
@DonAntonio what i meant was derivative. I was just writing that in short. U shoukd be able to understand that as this whole post is about derivative
$endgroup$
– rash
40 mins ago
$begingroup$
@MinusOne-Twelfth whether i am taking with respect to 2x or x, the derivative value isnt the same and thats my confusion. For example derivative of $sin 2x$ where $piover 2$. Differentiating with respect to 2x is -1 & with respect to x is -2. Why?
$endgroup$
– rash
36 mins ago
$begingroup$
@MinusOne-Twelfth whether i am taking with respect to 2x or x, the derivative value isnt the same and thats my confusion. For example derivative of $sin 2x$ where $piover 2$. Differentiating with respect to 2x is -1 & with respect to x is -2. Why?
$endgroup$
– rash
36 mins ago
1
1
$begingroup$
@littleO I didnt say it was correct. It is just my confusion of why should it not be like that and should be $2cos x$
$endgroup$
– rash
35 mins ago
$begingroup$
@littleO I didnt say it was correct. It is just my confusion of why should it not be like that and should be $2cos x$
$endgroup$
– rash
35 mins ago
|
show 9 more comments
3 Answers
3
active
oldest
votes
$begingroup$
Visually, the derivative is the slope of the tangent line, and the derivative allows us to take a nonlinear function $f$ and approximate it locally with a linear function (that is, a function whose graph is a straight line). In other words, if we know the value of $f(x)$, we can approximate the value of $f$ at a nearby point $x + Delta x$ as follows:
$$
tag{1} f(x + Delta x) approx f(x) + f'(x) Delta x.
$$
Now suppose that $f(x) = g(h(x))$. Then we can approximate $f(x + Delta x)$ by using the above approximation twice, first with $h$ and then with $g$, as follows:
begin{align}
f(x + Delta x) &= g(h(x + Delta x)) \
&approx g(h(x) + h'(x) Delta x) \
&approx g(h(x)) + g'(h(x)) h'(x) Delta x.
end{align}
Comparing this result with equation (1), we see that
$$
f'(x) = g'(h(x)) h'(x).
$$
This is not yet a rigorous proof, but it shows how easy it is to discover the chain rule, and this derivation can be made into a rigorous proof without too much additional effort.
$endgroup$
add a comment |
$begingroup$
When you said that the differentiation of $sin2x$ is $cos2x$, you didn't actually differentiate $sin 2x$ with respect to $x$, you differentiated it with respect to $2x$. Because the differentiation rule is that
$$ frac{d}{dx}sin x = cos x$$
so, only by replacing ALL $x$ in the formula above can you follow the same rule without breaking it, which is
$$ frac{d}{d(2x)}sin 2x = cos 2x$$
However, the question isn't asking you to find $frac{d}{d(2x)} sin 2x$, it is asking you to find $frac{d}{dx} sin 2x$. See the difference here?
Since you differentiated the outer function,$f$, with respect to $2x$, you differentiated it with respect to the inner function because $g(x)=2x$.
So you actually got $frac{df}{dg}=cos 2x$.
To get from $frac{df}{dg}$ to $frac{df}{dx}$, you just need to multiply by $frac{dg}{dx}$ because:
$$frac{df}{dg}timesfrac{dg}{dx} = frac{df}{dx} $$
after cancelling out the $dg$.
In this problem, $frac{dg}{dx} = frac{d}{dx}2x = 2$.
That is why you have to mulitply a $2$ to your $cos 2x$.
New contributor
$endgroup$
$begingroup$
Great explanation, but I have to mention that "derive" does not mean "differentiate". The words are not interchangable.
$endgroup$
– dbx
13 mins ago
$begingroup$
@dbx thanks for the catch! I've updated it.
$endgroup$
– Carina Chen
11 mins ago
add a comment |
$begingroup$
This is a good question in my opinion. WHY is the chain rule right?
My quick answer is that you are using the chain rule already without knowing it in the product rule, power rule, ect:
$$
frac{d}{dx}x^n = nx^{n-1}cdot frac{d}{dx}x = nx^{n-1}
$$
So when you differentiate $sin x$ you are actually doing $cos x cdot x' = cos x$.
For a more detailed answer, lets look at the definition of the derivative.
$$
F'(x) = lim_{yrightarrow x}frac{F(x)-F(y)}{x-y}
$$
so let $F(x) = f(g(x))$ and what do we get?
$$
F'(x) = lim_{yrightarrow x}frac{f(g(x)) - f(g(y))}{x-y}
$$
which we can't evaluate. Let us assume that $g(x) ne g(y)$ when $x$ is 'close' to $y$, then we can multiply the whole thing by 1 to get the product of two derivatives:
$$
F'(x) = lim_{yrightarrow x}frac{f(g(x)) - f(g(y))}{g(x)-g(y)}cdot lim_{yrightarrow x} frac{g(x)-g(y)}{x-y} = f'(g(x))g'(x)
$$
where if we want to be picky we can consider $g(x)=g(y)$ too.
(What follows is quite informal) The chain rule actually says something fundamental about composition. We can think of the function $g(x)$ as 'stretching' or 'shrinking' the domain of $f$. When we differentiate we are differentiating with respect to $f$ under an 'unstretched' domain and must correct for our error by multiplying by the derivative of $g$ which is a measure of how severely the domain was stretched. This is why the power rule ect. do not seem to use the chain rule, the domain is unstretched, so our derivative doesn't need to be corrected at all!
For your example of $sin 2x$ lets think about what is going on, we are essentially squeezing $sin x$ in the $x$ direction. But this will make the slope of the sine function increase in a predictable way, in fact the slope at every point of this squeezed graph is twice as big as the original sine graph, exactly as predicted by the chain rule!
For more complicated $g(x)$ the chain rule measures the rate at which the domain is changing from $x$ at every point to make the derivative correct.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3151008%2fwhat-is-the-purpose-or-proof-behind-chain-rule%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Visually, the derivative is the slope of the tangent line, and the derivative allows us to take a nonlinear function $f$ and approximate it locally with a linear function (that is, a function whose graph is a straight line). In other words, if we know the value of $f(x)$, we can approximate the value of $f$ at a nearby point $x + Delta x$ as follows:
$$
tag{1} f(x + Delta x) approx f(x) + f'(x) Delta x.
$$
Now suppose that $f(x) = g(h(x))$. Then we can approximate $f(x + Delta x)$ by using the above approximation twice, first with $h$ and then with $g$, as follows:
begin{align}
f(x + Delta x) &= g(h(x + Delta x)) \
&approx g(h(x) + h'(x) Delta x) \
&approx g(h(x)) + g'(h(x)) h'(x) Delta x.
end{align}
Comparing this result with equation (1), we see that
$$
f'(x) = g'(h(x)) h'(x).
$$
This is not yet a rigorous proof, but it shows how easy it is to discover the chain rule, and this derivation can be made into a rigorous proof without too much additional effort.
$endgroup$
add a comment |
$begingroup$
Visually, the derivative is the slope of the tangent line, and the derivative allows us to take a nonlinear function $f$ and approximate it locally with a linear function (that is, a function whose graph is a straight line). In other words, if we know the value of $f(x)$, we can approximate the value of $f$ at a nearby point $x + Delta x$ as follows:
$$
tag{1} f(x + Delta x) approx f(x) + f'(x) Delta x.
$$
Now suppose that $f(x) = g(h(x))$. Then we can approximate $f(x + Delta x)$ by using the above approximation twice, first with $h$ and then with $g$, as follows:
begin{align}
f(x + Delta x) &= g(h(x + Delta x)) \
&approx g(h(x) + h'(x) Delta x) \
&approx g(h(x)) + g'(h(x)) h'(x) Delta x.
end{align}
Comparing this result with equation (1), we see that
$$
f'(x) = g'(h(x)) h'(x).
$$
This is not yet a rigorous proof, but it shows how easy it is to discover the chain rule, and this derivation can be made into a rigorous proof without too much additional effort.
$endgroup$
add a comment |
$begingroup$
Visually, the derivative is the slope of the tangent line, and the derivative allows us to take a nonlinear function $f$ and approximate it locally with a linear function (that is, a function whose graph is a straight line). In other words, if we know the value of $f(x)$, we can approximate the value of $f$ at a nearby point $x + Delta x$ as follows:
$$
tag{1} f(x + Delta x) approx f(x) + f'(x) Delta x.
$$
Now suppose that $f(x) = g(h(x))$. Then we can approximate $f(x + Delta x)$ by using the above approximation twice, first with $h$ and then with $g$, as follows:
begin{align}
f(x + Delta x) &= g(h(x + Delta x)) \
&approx g(h(x) + h'(x) Delta x) \
&approx g(h(x)) + g'(h(x)) h'(x) Delta x.
end{align}
Comparing this result with equation (1), we see that
$$
f'(x) = g'(h(x)) h'(x).
$$
This is not yet a rigorous proof, but it shows how easy it is to discover the chain rule, and this derivation can be made into a rigorous proof without too much additional effort.
$endgroup$
Visually, the derivative is the slope of the tangent line, and the derivative allows us to take a nonlinear function $f$ and approximate it locally with a linear function (that is, a function whose graph is a straight line). In other words, if we know the value of $f(x)$, we can approximate the value of $f$ at a nearby point $x + Delta x$ as follows:
$$
tag{1} f(x + Delta x) approx f(x) + f'(x) Delta x.
$$
Now suppose that $f(x) = g(h(x))$. Then we can approximate $f(x + Delta x)$ by using the above approximation twice, first with $h$ and then with $g$, as follows:
begin{align}
f(x + Delta x) &= g(h(x + Delta x)) \
&approx g(h(x) + h'(x) Delta x) \
&approx g(h(x)) + g'(h(x)) h'(x) Delta x.
end{align}
Comparing this result with equation (1), we see that
$$
f'(x) = g'(h(x)) h'(x).
$$
This is not yet a rigorous proof, but it shows how easy it is to discover the chain rule, and this derivation can be made into a rigorous proof without too much additional effort.
answered 19 mins ago
littleOlittleO
30k647110
30k647110
add a comment |
add a comment |
$begingroup$
When you said that the differentiation of $sin2x$ is $cos2x$, you didn't actually differentiate $sin 2x$ with respect to $x$, you differentiated it with respect to $2x$. Because the differentiation rule is that
$$ frac{d}{dx}sin x = cos x$$
so, only by replacing ALL $x$ in the formula above can you follow the same rule without breaking it, which is
$$ frac{d}{d(2x)}sin 2x = cos 2x$$
However, the question isn't asking you to find $frac{d}{d(2x)} sin 2x$, it is asking you to find $frac{d}{dx} sin 2x$. See the difference here?
Since you differentiated the outer function,$f$, with respect to $2x$, you differentiated it with respect to the inner function because $g(x)=2x$.
So you actually got $frac{df}{dg}=cos 2x$.
To get from $frac{df}{dg}$ to $frac{df}{dx}$, you just need to multiply by $frac{dg}{dx}$ because:
$$frac{df}{dg}timesfrac{dg}{dx} = frac{df}{dx} $$
after cancelling out the $dg$.
In this problem, $frac{dg}{dx} = frac{d}{dx}2x = 2$.
That is why you have to mulitply a $2$ to your $cos 2x$.
New contributor
$endgroup$
$begingroup$
Great explanation, but I have to mention that "derive" does not mean "differentiate". The words are not interchangable.
$endgroup$
– dbx
13 mins ago
$begingroup$
@dbx thanks for the catch! I've updated it.
$endgroup$
– Carina Chen
11 mins ago
add a comment |
$begingroup$
When you said that the differentiation of $sin2x$ is $cos2x$, you didn't actually differentiate $sin 2x$ with respect to $x$, you differentiated it with respect to $2x$. Because the differentiation rule is that
$$ frac{d}{dx}sin x = cos x$$
so, only by replacing ALL $x$ in the formula above can you follow the same rule without breaking it, which is
$$ frac{d}{d(2x)}sin 2x = cos 2x$$
However, the question isn't asking you to find $frac{d}{d(2x)} sin 2x$, it is asking you to find $frac{d}{dx} sin 2x$. See the difference here?
Since you differentiated the outer function,$f$, with respect to $2x$, you differentiated it with respect to the inner function because $g(x)=2x$.
So you actually got $frac{df}{dg}=cos 2x$.
To get from $frac{df}{dg}$ to $frac{df}{dx}$, you just need to multiply by $frac{dg}{dx}$ because:
$$frac{df}{dg}timesfrac{dg}{dx} = frac{df}{dx} $$
after cancelling out the $dg$.
In this problem, $frac{dg}{dx} = frac{d}{dx}2x = 2$.
That is why you have to mulitply a $2$ to your $cos 2x$.
New contributor
$endgroup$
$begingroup$
Great explanation, but I have to mention that "derive" does not mean "differentiate". The words are not interchangable.
$endgroup$
– dbx
13 mins ago
$begingroup$
@dbx thanks for the catch! I've updated it.
$endgroup$
– Carina Chen
11 mins ago
add a comment |
$begingroup$
When you said that the differentiation of $sin2x$ is $cos2x$, you didn't actually differentiate $sin 2x$ with respect to $x$, you differentiated it with respect to $2x$. Because the differentiation rule is that
$$ frac{d}{dx}sin x = cos x$$
so, only by replacing ALL $x$ in the formula above can you follow the same rule without breaking it, which is
$$ frac{d}{d(2x)}sin 2x = cos 2x$$
However, the question isn't asking you to find $frac{d}{d(2x)} sin 2x$, it is asking you to find $frac{d}{dx} sin 2x$. See the difference here?
Since you differentiated the outer function,$f$, with respect to $2x$, you differentiated it with respect to the inner function because $g(x)=2x$.
So you actually got $frac{df}{dg}=cos 2x$.
To get from $frac{df}{dg}$ to $frac{df}{dx}$, you just need to multiply by $frac{dg}{dx}$ because:
$$frac{df}{dg}timesfrac{dg}{dx} = frac{df}{dx} $$
after cancelling out the $dg$.
In this problem, $frac{dg}{dx} = frac{d}{dx}2x = 2$.
That is why you have to mulitply a $2$ to your $cos 2x$.
New contributor
$endgroup$
When you said that the differentiation of $sin2x$ is $cos2x$, you didn't actually differentiate $sin 2x$ with respect to $x$, you differentiated it with respect to $2x$. Because the differentiation rule is that
$$ frac{d}{dx}sin x = cos x$$
so, only by replacing ALL $x$ in the formula above can you follow the same rule without breaking it, which is
$$ frac{d}{d(2x)}sin 2x = cos 2x$$
However, the question isn't asking you to find $frac{d}{d(2x)} sin 2x$, it is asking you to find $frac{d}{dx} sin 2x$. See the difference here?
Since you differentiated the outer function,$f$, with respect to $2x$, you differentiated it with respect to the inner function because $g(x)=2x$.
So you actually got $frac{df}{dg}=cos 2x$.
To get from $frac{df}{dg}$ to $frac{df}{dx}$, you just need to multiply by $frac{dg}{dx}$ because:
$$frac{df}{dg}timesfrac{dg}{dx} = frac{df}{dx} $$
after cancelling out the $dg$.
In this problem, $frac{dg}{dx} = frac{d}{dx}2x = 2$.
That is why you have to mulitply a $2$ to your $cos 2x$.
New contributor
edited 12 mins ago
New contributor
answered 18 mins ago
Carina ChenCarina Chen
112
112
New contributor
New contributor
$begingroup$
Great explanation, but I have to mention that "derive" does not mean "differentiate". The words are not interchangable.
$endgroup$
– dbx
13 mins ago
$begingroup$
@dbx thanks for the catch! I've updated it.
$endgroup$
– Carina Chen
11 mins ago
add a comment |
$begingroup$
Great explanation, but I have to mention that "derive" does not mean "differentiate". The words are not interchangable.
$endgroup$
– dbx
13 mins ago
$begingroup$
@dbx thanks for the catch! I've updated it.
$endgroup$
– Carina Chen
11 mins ago
$begingroup$
Great explanation, but I have to mention that "derive" does not mean "differentiate". The words are not interchangable.
$endgroup$
– dbx
13 mins ago
$begingroup$
Great explanation, but I have to mention that "derive" does not mean "differentiate". The words are not interchangable.
$endgroup$
– dbx
13 mins ago
$begingroup$
@dbx thanks for the catch! I've updated it.
$endgroup$
– Carina Chen
11 mins ago
$begingroup$
@dbx thanks for the catch! I've updated it.
$endgroup$
– Carina Chen
11 mins ago
add a comment |
$begingroup$
This is a good question in my opinion. WHY is the chain rule right?
My quick answer is that you are using the chain rule already without knowing it in the product rule, power rule, ect:
$$
frac{d}{dx}x^n = nx^{n-1}cdot frac{d}{dx}x = nx^{n-1}
$$
So when you differentiate $sin x$ you are actually doing $cos x cdot x' = cos x$.
For a more detailed answer, lets look at the definition of the derivative.
$$
F'(x) = lim_{yrightarrow x}frac{F(x)-F(y)}{x-y}
$$
so let $F(x) = f(g(x))$ and what do we get?
$$
F'(x) = lim_{yrightarrow x}frac{f(g(x)) - f(g(y))}{x-y}
$$
which we can't evaluate. Let us assume that $g(x) ne g(y)$ when $x$ is 'close' to $y$, then we can multiply the whole thing by 1 to get the product of two derivatives:
$$
F'(x) = lim_{yrightarrow x}frac{f(g(x)) - f(g(y))}{g(x)-g(y)}cdot lim_{yrightarrow x} frac{g(x)-g(y)}{x-y} = f'(g(x))g'(x)
$$
where if we want to be picky we can consider $g(x)=g(y)$ too.
(What follows is quite informal) The chain rule actually says something fundamental about composition. We can think of the function $g(x)$ as 'stretching' or 'shrinking' the domain of $f$. When we differentiate we are differentiating with respect to $f$ under an 'unstretched' domain and must correct for our error by multiplying by the derivative of $g$ which is a measure of how severely the domain was stretched. This is why the power rule ect. do not seem to use the chain rule, the domain is unstretched, so our derivative doesn't need to be corrected at all!
For your example of $sin 2x$ lets think about what is going on, we are essentially squeezing $sin x$ in the $x$ direction. But this will make the slope of the sine function increase in a predictable way, in fact the slope at every point of this squeezed graph is twice as big as the original sine graph, exactly as predicted by the chain rule!
For more complicated $g(x)$ the chain rule measures the rate at which the domain is changing from $x$ at every point to make the derivative correct.
$endgroup$
add a comment |
$begingroup$
This is a good question in my opinion. WHY is the chain rule right?
My quick answer is that you are using the chain rule already without knowing it in the product rule, power rule, ect:
$$
frac{d}{dx}x^n = nx^{n-1}cdot frac{d}{dx}x = nx^{n-1}
$$
So when you differentiate $sin x$ you are actually doing $cos x cdot x' = cos x$.
For a more detailed answer, lets look at the definition of the derivative.
$$
F'(x) = lim_{yrightarrow x}frac{F(x)-F(y)}{x-y}
$$
so let $F(x) = f(g(x))$ and what do we get?
$$
F'(x) = lim_{yrightarrow x}frac{f(g(x)) - f(g(y))}{x-y}
$$
which we can't evaluate. Let us assume that $g(x) ne g(y)$ when $x$ is 'close' to $y$, then we can multiply the whole thing by 1 to get the product of two derivatives:
$$
F'(x) = lim_{yrightarrow x}frac{f(g(x)) - f(g(y))}{g(x)-g(y)}cdot lim_{yrightarrow x} frac{g(x)-g(y)}{x-y} = f'(g(x))g'(x)
$$
where if we want to be picky we can consider $g(x)=g(y)$ too.
(What follows is quite informal) The chain rule actually says something fundamental about composition. We can think of the function $g(x)$ as 'stretching' or 'shrinking' the domain of $f$. When we differentiate we are differentiating with respect to $f$ under an 'unstretched' domain and must correct for our error by multiplying by the derivative of $g$ which is a measure of how severely the domain was stretched. This is why the power rule ect. do not seem to use the chain rule, the domain is unstretched, so our derivative doesn't need to be corrected at all!
For your example of $sin 2x$ lets think about what is going on, we are essentially squeezing $sin x$ in the $x$ direction. But this will make the slope of the sine function increase in a predictable way, in fact the slope at every point of this squeezed graph is twice as big as the original sine graph, exactly as predicted by the chain rule!
For more complicated $g(x)$ the chain rule measures the rate at which the domain is changing from $x$ at every point to make the derivative correct.
$endgroup$
add a comment |
$begingroup$
This is a good question in my opinion. WHY is the chain rule right?
My quick answer is that you are using the chain rule already without knowing it in the product rule, power rule, ect:
$$
frac{d}{dx}x^n = nx^{n-1}cdot frac{d}{dx}x = nx^{n-1}
$$
So when you differentiate $sin x$ you are actually doing $cos x cdot x' = cos x$.
For a more detailed answer, lets look at the definition of the derivative.
$$
F'(x) = lim_{yrightarrow x}frac{F(x)-F(y)}{x-y}
$$
so let $F(x) = f(g(x))$ and what do we get?
$$
F'(x) = lim_{yrightarrow x}frac{f(g(x)) - f(g(y))}{x-y}
$$
which we can't evaluate. Let us assume that $g(x) ne g(y)$ when $x$ is 'close' to $y$, then we can multiply the whole thing by 1 to get the product of two derivatives:
$$
F'(x) = lim_{yrightarrow x}frac{f(g(x)) - f(g(y))}{g(x)-g(y)}cdot lim_{yrightarrow x} frac{g(x)-g(y)}{x-y} = f'(g(x))g'(x)
$$
where if we want to be picky we can consider $g(x)=g(y)$ too.
(What follows is quite informal) The chain rule actually says something fundamental about composition. We can think of the function $g(x)$ as 'stretching' or 'shrinking' the domain of $f$. When we differentiate we are differentiating with respect to $f$ under an 'unstretched' domain and must correct for our error by multiplying by the derivative of $g$ which is a measure of how severely the domain was stretched. This is why the power rule ect. do not seem to use the chain rule, the domain is unstretched, so our derivative doesn't need to be corrected at all!
For your example of $sin 2x$ lets think about what is going on, we are essentially squeezing $sin x$ in the $x$ direction. But this will make the slope of the sine function increase in a predictable way, in fact the slope at every point of this squeezed graph is twice as big as the original sine graph, exactly as predicted by the chain rule!
For more complicated $g(x)$ the chain rule measures the rate at which the domain is changing from $x$ at every point to make the derivative correct.
$endgroup$
This is a good question in my opinion. WHY is the chain rule right?
My quick answer is that you are using the chain rule already without knowing it in the product rule, power rule, ect:
$$
frac{d}{dx}x^n = nx^{n-1}cdot frac{d}{dx}x = nx^{n-1}
$$
So when you differentiate $sin x$ you are actually doing $cos x cdot x' = cos x$.
For a more detailed answer, lets look at the definition of the derivative.
$$
F'(x) = lim_{yrightarrow x}frac{F(x)-F(y)}{x-y}
$$
so let $F(x) = f(g(x))$ and what do we get?
$$
F'(x) = lim_{yrightarrow x}frac{f(g(x)) - f(g(y))}{x-y}
$$
which we can't evaluate. Let us assume that $g(x) ne g(y)$ when $x$ is 'close' to $y$, then we can multiply the whole thing by 1 to get the product of two derivatives:
$$
F'(x) = lim_{yrightarrow x}frac{f(g(x)) - f(g(y))}{g(x)-g(y)}cdot lim_{yrightarrow x} frac{g(x)-g(y)}{x-y} = f'(g(x))g'(x)
$$
where if we want to be picky we can consider $g(x)=g(y)$ too.
(What follows is quite informal) The chain rule actually says something fundamental about composition. We can think of the function $g(x)$ as 'stretching' or 'shrinking' the domain of $f$. When we differentiate we are differentiating with respect to $f$ under an 'unstretched' domain and must correct for our error by multiplying by the derivative of $g$ which is a measure of how severely the domain was stretched. This is why the power rule ect. do not seem to use the chain rule, the domain is unstretched, so our derivative doesn't need to be corrected at all!
For your example of $sin 2x$ lets think about what is going on, we are essentially squeezing $sin x$ in the $x$ direction. But this will make the slope of the sine function increase in a predictable way, in fact the slope at every point of this squeezed graph is twice as big as the original sine graph, exactly as predicted by the chain rule!
For more complicated $g(x)$ the chain rule measures the rate at which the domain is changing from $x$ at every point to make the derivative correct.
edited 7 mins ago
answered 13 mins ago
Kyle CKyle C
314
314
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3151008%2fwhat-is-the-purpose-or-proof-behind-chain-rule%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
" Why should $sin 2x;$ be $;2cos 2x$?" No, it isn't: its derivative is. Why? Because that's what we get from theorems or from the definition of derivative as limit. That's all. And yes: of course there is proof of the chain rule: any decent calculus book includes it.
$endgroup$
– DonAntonio
45 mins ago
$begingroup$
In your post, when you are 'differentiating without chain rule', you are differentiating $sin 2x$ with respect to $2x$, rather than with respect to $x$.
$endgroup$
– Minus One-Twelfth
44 mins ago
$begingroup$
@DonAntonio what i meant was derivative. I was just writing that in short. U shoukd be able to understand that as this whole post is about derivative
$endgroup$
– rash
40 mins ago
$begingroup$
@MinusOne-Twelfth whether i am taking with respect to 2x or x, the derivative value isnt the same and thats my confusion. For example derivative of $sin 2x$ where $piover 2$. Differentiating with respect to 2x is -1 & with respect to x is -2. Why?
$endgroup$
– rash
36 mins ago
1
$begingroup$
@littleO I didnt say it was correct. It is just my confusion of why should it not be like that and should be $2cos x$
$endgroup$
– rash
35 mins ago