Distributing a matrix The 2019 Stack Overflow Developer Survey Results Are InOn multiplying...

Is a "Democratic" Oligarchy-Style System Possible?

How come people say “Would of”?

Feature engineering suggestion required

Can a rogue use sneak attack with weapons that have the thrown property even if they are not thrown?

Does the shape of a die affect the probability of a number being rolled?

Protecting Dualbooting Windows from dangerous code (like rm -rf)

Is bread bad for ducks?

Return to UK after having been refused entry years ago

Am I thawing this London Broil safely?

Apparent duplicates between Haynes service instructions and MOT

What do hard-Brexiteers want with respect to the Irish border?

What are the motivations for publishing new editions of an existing textbook, beyond new discoveries in a field?

Which Sci-Fi work first showed weapon of galactic-scale mass destruction?

Loose spokes after only a few rides

Who coined the term "madman theory"?

What is the motivation for a law requiring 2 parties to consent for recording a conversation

Should I use my personal e-mail address, or my workplace one, when registering to external websites for work purposes?

Is "plugging out" electronic devices an American expression?

Did Scotland spend $250,000 for the slogan "Welcome to Scotland"?

Multiply Two Integer Polynomials

What is the closest word meaning "respect for time / mindful"

Reference request: Oldest number theory books with (unsolved) exercises?

How are circuits which use complex ICs normally simulated?

Right tool to dig six foot holes?



Distributing a matrix



The 2019 Stack Overflow Developer Survey Results Are InOn multiplying quaternion matricesWhen is matrix multiplication commutative?Matrix multiplicationWhy aren't all matrices diagonalisable?Linear Transformation vs Matrixhow many ways is there to factor matrix?Can an arbitrary matrix represent any linear map just by changing the basis?Inverse matrix confusionA question matrix multiplication commutative?Joint Matrices Factorization












3












$begingroup$


Since matrix mutiplication is not commutative, the two ways in which you can factorize matrices makes a difference in which side the factor goes on.



In particular, if I want to distribute



$$((I - A) + A)(I - A)^{-1},$$



would it become



$$(I - A)(I - A)^{-1} + A(I - A)^{-1} $$



OR would it be



$$(I - A)^{-1}(I - A) + (I - A)^{-1}A?$$



How do I know which side it goes on? I think the first one is correct.










share|cite|improve this question









$endgroup$

















    3












    $begingroup$


    Since matrix mutiplication is not commutative, the two ways in which you can factorize matrices makes a difference in which side the factor goes on.



    In particular, if I want to distribute



    $$((I - A) + A)(I - A)^{-1},$$



    would it become



    $$(I - A)(I - A)^{-1} + A(I - A)^{-1} $$



    OR would it be



    $$(I - A)^{-1}(I - A) + (I - A)^{-1}A?$$



    How do I know which side it goes on? I think the first one is correct.










    share|cite|improve this question









    $endgroup$















      3












      3








      3





      $begingroup$


      Since matrix mutiplication is not commutative, the two ways in which you can factorize matrices makes a difference in which side the factor goes on.



      In particular, if I want to distribute



      $$((I - A) + A)(I - A)^{-1},$$



      would it become



      $$(I - A)(I - A)^{-1} + A(I - A)^{-1} $$



      OR would it be



      $$(I - A)^{-1}(I - A) + (I - A)^{-1}A?$$



      How do I know which side it goes on? I think the first one is correct.










      share|cite|improve this question









      $endgroup$




      Since matrix mutiplication is not commutative, the two ways in which you can factorize matrices makes a difference in which side the factor goes on.



      In particular, if I want to distribute



      $$((I - A) + A)(I - A)^{-1},$$



      would it become



      $$(I - A)(I - A)^{-1} + A(I - A)^{-1} $$



      OR would it be



      $$(I - A)^{-1}(I - A) + (I - A)^{-1}A?$$



      How do I know which side it goes on? I think the first one is correct.







      linear-algebra






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked 4 hours ago









      redblacktreesredblacktrees

      424




      424






















          2 Answers
          2






          active

          oldest

          votes


















          2












          $begingroup$

          Your first answer is correct. There are two distributive laws for matrices,
          $$A(B+C)=AB+ACquadhbox{and}quad (A+B)C=AC+BC ,$$
          but not $A(B+C)=BA+CA$ or $(A+B)C=AC+CB$ or.....






          share|cite|improve this answer









          $endgroup$





















            1












            $begingroup$

            In general, this is what we call "right distributivity" - I usually hear the context for this in the sense of ring axioms. Let's sojourn into this a bit - though if you're not familiar with abstract algebra, this won't be particularly enlightening, and you might be better off skipping to the very end.





            Let $(R,+,cdot,0,1)$ be a ring; then we call left-distributivity and define it by



            $$a cdot (b+c) = acdot b + a cdot c$$



            Similarly, right-distributivity is given by



            $$(b+c)cdot a = bcdot a + ccdot a$$



            Note: we are not guaranteed that $acdot b = bcdot a$ unless $R$ is a commutative ring.



            In the context of matrices over rings, for which I reference Wikipedia, you can define $M_n(R)$ as the $ntimes n$ matrices over a ring $R$ (i.e. its elements come from the ring, and the addition and multiplication of elements are shared). Notably, we have that $M_n(R)$ is a commutative ring if and only if $R$ is a commutative ring and $n=1$ (so basically effectively no different from working in the ring in question).





            So what does this mean? This means, in your case, you probably do not have $AB=BA$ (of course, I imagine you know this). And thus in the context of the distributivity thigns above, you would have



            $$(B+C)A = BA + CA$$



            Your example has $B = I-A$ and $C=A$. And thus, your first example is correct: if you are distributing something on the right side, and cannot ensure commutativity, you should multiply that element by everything in the brackets on the right side.






            share|cite|improve this answer









            $endgroup$














              Your Answer





              StackExchange.ifUsing("editor", function () {
              return StackExchange.using("mathjaxEditing", function () {
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              });
              });
              }, "mathjax-editing");

              StackExchange.ready(function() {
              var channelOptions = {
              tags: "".split(" "),
              id: "69"
              };
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function() {
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled) {
              StackExchange.using("snippets", function() {
              createEditor();
              });
              }
              else {
              createEditor();
              }
              });

              function createEditor() {
              StackExchange.prepareEditor({
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader: {
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              },
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              });


              }
              });














              draft saved

              draft discarded


















              StackExchange.ready(
              function () {
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3183231%2fdistributing-a-matrix%23new-answer', 'question_page');
              }
              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              2












              $begingroup$

              Your first answer is correct. There are two distributive laws for matrices,
              $$A(B+C)=AB+ACquadhbox{and}quad (A+B)C=AC+BC ,$$
              but not $A(B+C)=BA+CA$ or $(A+B)C=AC+CB$ or.....






              share|cite|improve this answer









              $endgroup$


















                2












                $begingroup$

                Your first answer is correct. There are two distributive laws for matrices,
                $$A(B+C)=AB+ACquadhbox{and}quad (A+B)C=AC+BC ,$$
                but not $A(B+C)=BA+CA$ or $(A+B)C=AC+CB$ or.....






                share|cite|improve this answer









                $endgroup$
















                  2












                  2








                  2





                  $begingroup$

                  Your first answer is correct. There are two distributive laws for matrices,
                  $$A(B+C)=AB+ACquadhbox{and}quad (A+B)C=AC+BC ,$$
                  but not $A(B+C)=BA+CA$ or $(A+B)C=AC+CB$ or.....






                  share|cite|improve this answer









                  $endgroup$



                  Your first answer is correct. There are two distributive laws for matrices,
                  $$A(B+C)=AB+ACquadhbox{and}quad (A+B)C=AC+BC ,$$
                  but not $A(B+C)=BA+CA$ or $(A+B)C=AC+CB$ or.....







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered 4 hours ago









                  DavidDavid

                  69.8k668131




                  69.8k668131























                      1












                      $begingroup$

                      In general, this is what we call "right distributivity" - I usually hear the context for this in the sense of ring axioms. Let's sojourn into this a bit - though if you're not familiar with abstract algebra, this won't be particularly enlightening, and you might be better off skipping to the very end.





                      Let $(R,+,cdot,0,1)$ be a ring; then we call left-distributivity and define it by



                      $$a cdot (b+c) = acdot b + a cdot c$$



                      Similarly, right-distributivity is given by



                      $$(b+c)cdot a = bcdot a + ccdot a$$



                      Note: we are not guaranteed that $acdot b = bcdot a$ unless $R$ is a commutative ring.



                      In the context of matrices over rings, for which I reference Wikipedia, you can define $M_n(R)$ as the $ntimes n$ matrices over a ring $R$ (i.e. its elements come from the ring, and the addition and multiplication of elements are shared). Notably, we have that $M_n(R)$ is a commutative ring if and only if $R$ is a commutative ring and $n=1$ (so basically effectively no different from working in the ring in question).





                      So what does this mean? This means, in your case, you probably do not have $AB=BA$ (of course, I imagine you know this). And thus in the context of the distributivity thigns above, you would have



                      $$(B+C)A = BA + CA$$



                      Your example has $B = I-A$ and $C=A$. And thus, your first example is correct: if you are distributing something on the right side, and cannot ensure commutativity, you should multiply that element by everything in the brackets on the right side.






                      share|cite|improve this answer









                      $endgroup$


















                        1












                        $begingroup$

                        In general, this is what we call "right distributivity" - I usually hear the context for this in the sense of ring axioms. Let's sojourn into this a bit - though if you're not familiar with abstract algebra, this won't be particularly enlightening, and you might be better off skipping to the very end.





                        Let $(R,+,cdot,0,1)$ be a ring; then we call left-distributivity and define it by



                        $$a cdot (b+c) = acdot b + a cdot c$$



                        Similarly, right-distributivity is given by



                        $$(b+c)cdot a = bcdot a + ccdot a$$



                        Note: we are not guaranteed that $acdot b = bcdot a$ unless $R$ is a commutative ring.



                        In the context of matrices over rings, for which I reference Wikipedia, you can define $M_n(R)$ as the $ntimes n$ matrices over a ring $R$ (i.e. its elements come from the ring, and the addition and multiplication of elements are shared). Notably, we have that $M_n(R)$ is a commutative ring if and only if $R$ is a commutative ring and $n=1$ (so basically effectively no different from working in the ring in question).





                        So what does this mean? This means, in your case, you probably do not have $AB=BA$ (of course, I imagine you know this). And thus in the context of the distributivity thigns above, you would have



                        $$(B+C)A = BA + CA$$



                        Your example has $B = I-A$ and $C=A$. And thus, your first example is correct: if you are distributing something on the right side, and cannot ensure commutativity, you should multiply that element by everything in the brackets on the right side.






                        share|cite|improve this answer









                        $endgroup$
















                          1












                          1








                          1





                          $begingroup$

                          In general, this is what we call "right distributivity" - I usually hear the context for this in the sense of ring axioms. Let's sojourn into this a bit - though if you're not familiar with abstract algebra, this won't be particularly enlightening, and you might be better off skipping to the very end.





                          Let $(R,+,cdot,0,1)$ be a ring; then we call left-distributivity and define it by



                          $$a cdot (b+c) = acdot b + a cdot c$$



                          Similarly, right-distributivity is given by



                          $$(b+c)cdot a = bcdot a + ccdot a$$



                          Note: we are not guaranteed that $acdot b = bcdot a$ unless $R$ is a commutative ring.



                          In the context of matrices over rings, for which I reference Wikipedia, you can define $M_n(R)$ as the $ntimes n$ matrices over a ring $R$ (i.e. its elements come from the ring, and the addition and multiplication of elements are shared). Notably, we have that $M_n(R)$ is a commutative ring if and only if $R$ is a commutative ring and $n=1$ (so basically effectively no different from working in the ring in question).





                          So what does this mean? This means, in your case, you probably do not have $AB=BA$ (of course, I imagine you know this). And thus in the context of the distributivity thigns above, you would have



                          $$(B+C)A = BA + CA$$



                          Your example has $B = I-A$ and $C=A$. And thus, your first example is correct: if you are distributing something on the right side, and cannot ensure commutativity, you should multiply that element by everything in the brackets on the right side.






                          share|cite|improve this answer









                          $endgroup$



                          In general, this is what we call "right distributivity" - I usually hear the context for this in the sense of ring axioms. Let's sojourn into this a bit - though if you're not familiar with abstract algebra, this won't be particularly enlightening, and you might be better off skipping to the very end.





                          Let $(R,+,cdot,0,1)$ be a ring; then we call left-distributivity and define it by



                          $$a cdot (b+c) = acdot b + a cdot c$$



                          Similarly, right-distributivity is given by



                          $$(b+c)cdot a = bcdot a + ccdot a$$



                          Note: we are not guaranteed that $acdot b = bcdot a$ unless $R$ is a commutative ring.



                          In the context of matrices over rings, for which I reference Wikipedia, you can define $M_n(R)$ as the $ntimes n$ matrices over a ring $R$ (i.e. its elements come from the ring, and the addition and multiplication of elements are shared). Notably, we have that $M_n(R)$ is a commutative ring if and only if $R$ is a commutative ring and $n=1$ (so basically effectively no different from working in the ring in question).





                          So what does this mean? This means, in your case, you probably do not have $AB=BA$ (of course, I imagine you know this). And thus in the context of the distributivity thigns above, you would have



                          $$(B+C)A = BA + CA$$



                          Your example has $B = I-A$ and $C=A$. And thus, your first example is correct: if you are distributing something on the right side, and cannot ensure commutativity, you should multiply that element by everything in the brackets on the right side.







                          share|cite|improve this answer












                          share|cite|improve this answer



                          share|cite|improve this answer










                          answered 4 hours ago









                          Eevee TrainerEevee Trainer

                          10.4k31742




                          10.4k31742






























                              draft saved

                              draft discarded




















































                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function () {
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3183231%2fdistributing-a-matrix%23new-answer', 'question_page');
                              }
                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              Gersau Kjelder | Navigasjonsmeny46°59′0″N 8°31′0″E46°59′0″N...

                              Hestehale Innhaldsliste Hestehale på kvinner | Hestehale på menn | Galleri | Sjå òg |...

                              What is the “three and three hundred thousand syndrome”?Who wrote the book Arena?What five creatures were...