Continuity of Linear Operator Between Hilbert SpacesNorm of adjoint operator in Hilbert spaceSesquilinear...

Gantt Chart like rectangles with log scale

Are all passive ability checks floors for active ability checks?

Could the Saturn V actually have launched astronauts around Venus?

How to deal with taxi scam when on vacation?

It's a yearly task, alright

Credit cards used everywhere in Singapore or Malaysia?

Official degrees of earth’s rotation per day

Happy pi day, everyone!

Why one should not leave fingerprints on bulbs and plugs?

Why doesn't using two cd commands in bash script execute the second command?

Who is flying the vertibirds?

What has been your most complicated TikZ drawing?

Did Ender ever learn that he killed Stilson and/or Bonzo?

Do I need life insurance if I can cover my own funeral costs?

What should tie a collection of short-stories together?

What did Alexander Pope mean by "Expletives their feeble Aid do join"?

Python if-else code style for reduced code for rounding floats

How to create the Curved texte?

If I can solve Sudoku can I solve Travelling Salesman Problem(TSP)? If yes, how?

Sailing the cryptic seas

Can I use USB data pins as power source

Knife as defense against stray dogs

How do I hide Chekhov's Gun?

My Graph Theory Students



Continuity of Linear Operator Between Hilbert Spaces


Norm of adjoint operator in Hilbert spaceSesquilinear forms on Hilbert spacesGradient of inner product in Hilbert spaceDissipativity for Hilbert spacesA self-adjoint operator on a Hilbert spaceComplementary slackness in Hilbert spacesProof that every bounded linear operator between hilbert spaces has an adjoint.Proof explanation related to the operator matricesShowing that $exists x in H : |A(x)| = |A|_mathcal{L}$ if $H$ is Hilbert and $A in mathcal{L}_c(X,Y)$.Why is this operator symmetric? A question concerning a paper from Brezis and Crandall













2












$begingroup$



Note: Please do not give a solution; I am curious to understand why my solution is incorrect, and would prefer guidance to help me complete the question myself. Thank you.






Let $mathcal{H}$ be a Hilbert space, and suppose that $Tintext{Hom}(mathcal{H},mathcal{H})$. Suppose that there exists an operator $tilde{T}:mathcal{H}rightarrowmathcal{H}$ such that,
begin{align}
langle Tx,yrangle =langle x,tilde{T}yrangle,
end{align}

$forall x,yinmathcal{H}$. Show that $T$ is continuous.



My current solution is as follows:



Assume for all $delta>0$ there exists $n>Ninmathbb{N}$ such that,
begin{align}
|x_{n}-x|<delta.
end{align}

Then,
begin{align}
langle Tx_{n}-Tx,Tx_{n}-Txrangle &= |Tx_{n}-Tx|^{2}\
&leq|Tx_{n}-Tx|=|T(x_{n}-x)|\
&leq|T||x_{n}-x|rightarrow 0text{ as }nrightarrowinfty.
end{align}



What am I doing wrong? I notice I do not use the existence of $tilde{T}$.



Second Attempt:



Assume $langle x_{n},xrangle rightarrow langle x,xrangle$ as $nrightarrowinfty$. Then, given $langle Tx,yrangle = langle x,tilde{T}yrangle$,
begin{align}
langle Tx_{n},yrangle &= langle x_{n},tilde{T}yranglerightarrow_{nrightarrowinfty}langle x,tilde{T}yrangle=langle Tx,yrangle.
end{align}

Therefore, $Tx_{n}rightarrow Tx$ as $nrightarrowinfty$.



Third Attempt:



Assume $|x_{n}-x|rightarrow 0$ as $nrightarrowinfty$. Then,
begin{align}
langle Tx_{n}-Tx,Tx_{n}-Txrangle=langle x_{n}-x,x_{n}-xrangle=|x_{n}-x|^{2}.
end{align}



By assumption $|x_{n}-x|^{2}rightarrow 0$ as $nrightarrowinfty$. Hence,
begin{align}
langle Tx_{n}-Tx,Tx_{n}-Txrangle = |Tx_{n}-Tx|^{2}rightarrow 0text{ as }nrightarrowinfty.
end{align}

Therefore, $T$ is continuous.










share|cite|improve this question











$endgroup$








  • 2




    $begingroup$
    The last inequality basically implies that the norm of T is bounded or that it is continuous
    $endgroup$
    – Andres Mejia
    5 hours ago






  • 1




    $begingroup$
    Comment on the second attempt: you showed that $Tx_n to Tx$ weakly, not in norm. Off-topic comment: I admire your tenacity. Keep trying!
    $endgroup$
    – Umberto P.
    4 hours ago












  • $begingroup$
    Thank you. Do you have a hint?
    $endgroup$
    – Jack
    4 hours ago










  • $begingroup$
    Third attempt made. Although not sure if this holds either.
    $endgroup$
    – Jack
    4 hours ago
















2












$begingroup$



Note: Please do not give a solution; I am curious to understand why my solution is incorrect, and would prefer guidance to help me complete the question myself. Thank you.






Let $mathcal{H}$ be a Hilbert space, and suppose that $Tintext{Hom}(mathcal{H},mathcal{H})$. Suppose that there exists an operator $tilde{T}:mathcal{H}rightarrowmathcal{H}$ such that,
begin{align}
langle Tx,yrangle =langle x,tilde{T}yrangle,
end{align}

$forall x,yinmathcal{H}$. Show that $T$ is continuous.



My current solution is as follows:



Assume for all $delta>0$ there exists $n>Ninmathbb{N}$ such that,
begin{align}
|x_{n}-x|<delta.
end{align}

Then,
begin{align}
langle Tx_{n}-Tx,Tx_{n}-Txrangle &= |Tx_{n}-Tx|^{2}\
&leq|Tx_{n}-Tx|=|T(x_{n}-x)|\
&leq|T||x_{n}-x|rightarrow 0text{ as }nrightarrowinfty.
end{align}



What am I doing wrong? I notice I do not use the existence of $tilde{T}$.



Second Attempt:



Assume $langle x_{n},xrangle rightarrow langle x,xrangle$ as $nrightarrowinfty$. Then, given $langle Tx,yrangle = langle x,tilde{T}yrangle$,
begin{align}
langle Tx_{n},yrangle &= langle x_{n},tilde{T}yranglerightarrow_{nrightarrowinfty}langle x,tilde{T}yrangle=langle Tx,yrangle.
end{align}

Therefore, $Tx_{n}rightarrow Tx$ as $nrightarrowinfty$.



Third Attempt:



Assume $|x_{n}-x|rightarrow 0$ as $nrightarrowinfty$. Then,
begin{align}
langle Tx_{n}-Tx,Tx_{n}-Txrangle=langle x_{n}-x,x_{n}-xrangle=|x_{n}-x|^{2}.
end{align}



By assumption $|x_{n}-x|^{2}rightarrow 0$ as $nrightarrowinfty$. Hence,
begin{align}
langle Tx_{n}-Tx,Tx_{n}-Txrangle = |Tx_{n}-Tx|^{2}rightarrow 0text{ as }nrightarrowinfty.
end{align}

Therefore, $T$ is continuous.










share|cite|improve this question











$endgroup$








  • 2




    $begingroup$
    The last inequality basically implies that the norm of T is bounded or that it is continuous
    $endgroup$
    – Andres Mejia
    5 hours ago






  • 1




    $begingroup$
    Comment on the second attempt: you showed that $Tx_n to Tx$ weakly, not in norm. Off-topic comment: I admire your tenacity. Keep trying!
    $endgroup$
    – Umberto P.
    4 hours ago












  • $begingroup$
    Thank you. Do you have a hint?
    $endgroup$
    – Jack
    4 hours ago










  • $begingroup$
    Third attempt made. Although not sure if this holds either.
    $endgroup$
    – Jack
    4 hours ago














2












2








2


1



$begingroup$



Note: Please do not give a solution; I am curious to understand why my solution is incorrect, and would prefer guidance to help me complete the question myself. Thank you.






Let $mathcal{H}$ be a Hilbert space, and suppose that $Tintext{Hom}(mathcal{H},mathcal{H})$. Suppose that there exists an operator $tilde{T}:mathcal{H}rightarrowmathcal{H}$ such that,
begin{align}
langle Tx,yrangle =langle x,tilde{T}yrangle,
end{align}

$forall x,yinmathcal{H}$. Show that $T$ is continuous.



My current solution is as follows:



Assume for all $delta>0$ there exists $n>Ninmathbb{N}$ such that,
begin{align}
|x_{n}-x|<delta.
end{align}

Then,
begin{align}
langle Tx_{n}-Tx,Tx_{n}-Txrangle &= |Tx_{n}-Tx|^{2}\
&leq|Tx_{n}-Tx|=|T(x_{n}-x)|\
&leq|T||x_{n}-x|rightarrow 0text{ as }nrightarrowinfty.
end{align}



What am I doing wrong? I notice I do not use the existence of $tilde{T}$.



Second Attempt:



Assume $langle x_{n},xrangle rightarrow langle x,xrangle$ as $nrightarrowinfty$. Then, given $langle Tx,yrangle = langle x,tilde{T}yrangle$,
begin{align}
langle Tx_{n},yrangle &= langle x_{n},tilde{T}yranglerightarrow_{nrightarrowinfty}langle x,tilde{T}yrangle=langle Tx,yrangle.
end{align}

Therefore, $Tx_{n}rightarrow Tx$ as $nrightarrowinfty$.



Third Attempt:



Assume $|x_{n}-x|rightarrow 0$ as $nrightarrowinfty$. Then,
begin{align}
langle Tx_{n}-Tx,Tx_{n}-Txrangle=langle x_{n}-x,x_{n}-xrangle=|x_{n}-x|^{2}.
end{align}



By assumption $|x_{n}-x|^{2}rightarrow 0$ as $nrightarrowinfty$. Hence,
begin{align}
langle Tx_{n}-Tx,Tx_{n}-Txrangle = |Tx_{n}-Tx|^{2}rightarrow 0text{ as }nrightarrowinfty.
end{align}

Therefore, $T$ is continuous.










share|cite|improve this question











$endgroup$





Note: Please do not give a solution; I am curious to understand why my solution is incorrect, and would prefer guidance to help me complete the question myself. Thank you.






Let $mathcal{H}$ be a Hilbert space, and suppose that $Tintext{Hom}(mathcal{H},mathcal{H})$. Suppose that there exists an operator $tilde{T}:mathcal{H}rightarrowmathcal{H}$ such that,
begin{align}
langle Tx,yrangle =langle x,tilde{T}yrangle,
end{align}

$forall x,yinmathcal{H}$. Show that $T$ is continuous.



My current solution is as follows:



Assume for all $delta>0$ there exists $n>Ninmathbb{N}$ such that,
begin{align}
|x_{n}-x|<delta.
end{align}

Then,
begin{align}
langle Tx_{n}-Tx,Tx_{n}-Txrangle &= |Tx_{n}-Tx|^{2}\
&leq|Tx_{n}-Tx|=|T(x_{n}-x)|\
&leq|T||x_{n}-x|rightarrow 0text{ as }nrightarrowinfty.
end{align}



What am I doing wrong? I notice I do not use the existence of $tilde{T}$.



Second Attempt:



Assume $langle x_{n},xrangle rightarrow langle x,xrangle$ as $nrightarrowinfty$. Then, given $langle Tx,yrangle = langle x,tilde{T}yrangle$,
begin{align}
langle Tx_{n},yrangle &= langle x_{n},tilde{T}yranglerightarrow_{nrightarrowinfty}langle x,tilde{T}yrangle=langle Tx,yrangle.
end{align}

Therefore, $Tx_{n}rightarrow Tx$ as $nrightarrowinfty$.



Third Attempt:



Assume $|x_{n}-x|rightarrow 0$ as $nrightarrowinfty$. Then,
begin{align}
langle Tx_{n}-Tx,Tx_{n}-Txrangle=langle x_{n}-x,x_{n}-xrangle=|x_{n}-x|^{2}.
end{align}



By assumption $|x_{n}-x|^{2}rightarrow 0$ as $nrightarrowinfty$. Hence,
begin{align}
langle Tx_{n}-Tx,Tx_{n}-Txrangle = |Tx_{n}-Tx|^{2}rightarrow 0text{ as }nrightarrowinfty.
end{align}

Therefore, $T$ is continuous.







functional-analysis continuity hilbert-spaces






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 4 hours ago







Jack

















asked 5 hours ago









JackJack

887




887








  • 2




    $begingroup$
    The last inequality basically implies that the norm of T is bounded or that it is continuous
    $endgroup$
    – Andres Mejia
    5 hours ago






  • 1




    $begingroup$
    Comment on the second attempt: you showed that $Tx_n to Tx$ weakly, not in norm. Off-topic comment: I admire your tenacity. Keep trying!
    $endgroup$
    – Umberto P.
    4 hours ago












  • $begingroup$
    Thank you. Do you have a hint?
    $endgroup$
    – Jack
    4 hours ago










  • $begingroup$
    Third attempt made. Although not sure if this holds either.
    $endgroup$
    – Jack
    4 hours ago














  • 2




    $begingroup$
    The last inequality basically implies that the norm of T is bounded or that it is continuous
    $endgroup$
    – Andres Mejia
    5 hours ago






  • 1




    $begingroup$
    Comment on the second attempt: you showed that $Tx_n to Tx$ weakly, not in norm. Off-topic comment: I admire your tenacity. Keep trying!
    $endgroup$
    – Umberto P.
    4 hours ago












  • $begingroup$
    Thank you. Do you have a hint?
    $endgroup$
    – Jack
    4 hours ago










  • $begingroup$
    Third attempt made. Although not sure if this holds either.
    $endgroup$
    – Jack
    4 hours ago








2




2




$begingroup$
The last inequality basically implies that the norm of T is bounded or that it is continuous
$endgroup$
– Andres Mejia
5 hours ago




$begingroup$
The last inequality basically implies that the norm of T is bounded or that it is continuous
$endgroup$
– Andres Mejia
5 hours ago




1




1




$begingroup$
Comment on the second attempt: you showed that $Tx_n to Tx$ weakly, not in norm. Off-topic comment: I admire your tenacity. Keep trying!
$endgroup$
– Umberto P.
4 hours ago






$begingroup$
Comment on the second attempt: you showed that $Tx_n to Tx$ weakly, not in norm. Off-topic comment: I admire your tenacity. Keep trying!
$endgroup$
– Umberto P.
4 hours ago














$begingroup$
Thank you. Do you have a hint?
$endgroup$
– Jack
4 hours ago




$begingroup$
Thank you. Do you have a hint?
$endgroup$
– Jack
4 hours ago












$begingroup$
Third attempt made. Although not sure if this holds either.
$endgroup$
– Jack
4 hours ago




$begingroup$
Third attempt made. Although not sure if this holds either.
$endgroup$
– Jack
4 hours ago










1 Answer
1






active

oldest

votes


















5












$begingroup$

The problem is that we can't assume that $T$ has a finite norm. Before we add that condition about having an adjoint map $tilde{T}$, we're simply assuming that $T$ is a linear map.



In fact, a linear map between normed vector spaces is continuous if and only if it has a finite operator norm. You assumed the statement we were trying to prove.



Second attempt: The assumption here should have been that $x_nto x$, as in the others. Then, yes, $langle Tx_n,yrangle to langle Tx,yrangle$ for each $y$. This is real progress. But, as stated in the comments, it's weak convergence rather than convergence in norm. Not quite there.



Third attempt: No, $langle Tu,Turangle$ is not equal to $langle u,urangle$ - it's equal to $langle u,tilde{T}Turangle$, and you don't know what $tilde{T}T$ does. This is not helpful.



All, right, lets go back to the attempt that made some progress. Are you familiar with the uniform boundedness principle? One consequence of that theorem is that any sequence of points in a Hilbert space that converges weakly is bounded. Can we use this to ensure that $T$ is a bounded operator?






share|cite|improve this answer











$endgroup$













  • $begingroup$
    So is the idea for me to use $tilde{T}$ to cancel out the operator norm in my final inequality?
    $endgroup$
    – Jack
    4 hours ago










  • $begingroup$
    @Jack no, that won't rescue the proof.
    $endgroup$
    – Umberto P.
    4 hours ago










  • $begingroup$
    New proof attempt. Please check if you can.
    $endgroup$
    – Jack
    4 hours ago










  • $begingroup$
    I am not familiar with that. I am only aware that given a family of linear operators $(T_{alpha})$ are such that $T_{alpha}:Erightarrow F$, where $E,F$ are Banach spaces. If $sup_{alphain A}|T_{alpha}x|<infty$ then $sup_{alphain A}|T_{alpha}|<infty$.
    $endgroup$
    – Jack
    1 min ago










  • $begingroup$
    Do you have a link to the corollary of Uniform Boundedness which you refer to?
    $endgroup$
    – Jack
    29 secs ago











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3149977%2fcontinuity-of-linear-operator-between-hilbert-spaces%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









5












$begingroup$

The problem is that we can't assume that $T$ has a finite norm. Before we add that condition about having an adjoint map $tilde{T}$, we're simply assuming that $T$ is a linear map.



In fact, a linear map between normed vector spaces is continuous if and only if it has a finite operator norm. You assumed the statement we were trying to prove.



Second attempt: The assumption here should have been that $x_nto x$, as in the others. Then, yes, $langle Tx_n,yrangle to langle Tx,yrangle$ for each $y$. This is real progress. But, as stated in the comments, it's weak convergence rather than convergence in norm. Not quite there.



Third attempt: No, $langle Tu,Turangle$ is not equal to $langle u,urangle$ - it's equal to $langle u,tilde{T}Turangle$, and you don't know what $tilde{T}T$ does. This is not helpful.



All, right, lets go back to the attempt that made some progress. Are you familiar with the uniform boundedness principle? One consequence of that theorem is that any sequence of points in a Hilbert space that converges weakly is bounded. Can we use this to ensure that $T$ is a bounded operator?






share|cite|improve this answer











$endgroup$













  • $begingroup$
    So is the idea for me to use $tilde{T}$ to cancel out the operator norm in my final inequality?
    $endgroup$
    – Jack
    4 hours ago










  • $begingroup$
    @Jack no, that won't rescue the proof.
    $endgroup$
    – Umberto P.
    4 hours ago










  • $begingroup$
    New proof attempt. Please check if you can.
    $endgroup$
    – Jack
    4 hours ago










  • $begingroup$
    I am not familiar with that. I am only aware that given a family of linear operators $(T_{alpha})$ are such that $T_{alpha}:Erightarrow F$, where $E,F$ are Banach spaces. If $sup_{alphain A}|T_{alpha}x|<infty$ then $sup_{alphain A}|T_{alpha}|<infty$.
    $endgroup$
    – Jack
    1 min ago










  • $begingroup$
    Do you have a link to the corollary of Uniform Boundedness which you refer to?
    $endgroup$
    – Jack
    29 secs ago
















5












$begingroup$

The problem is that we can't assume that $T$ has a finite norm. Before we add that condition about having an adjoint map $tilde{T}$, we're simply assuming that $T$ is a linear map.



In fact, a linear map between normed vector spaces is continuous if and only if it has a finite operator norm. You assumed the statement we were trying to prove.



Second attempt: The assumption here should have been that $x_nto x$, as in the others. Then, yes, $langle Tx_n,yrangle to langle Tx,yrangle$ for each $y$. This is real progress. But, as stated in the comments, it's weak convergence rather than convergence in norm. Not quite there.



Third attempt: No, $langle Tu,Turangle$ is not equal to $langle u,urangle$ - it's equal to $langle u,tilde{T}Turangle$, and you don't know what $tilde{T}T$ does. This is not helpful.



All, right, lets go back to the attempt that made some progress. Are you familiar with the uniform boundedness principle? One consequence of that theorem is that any sequence of points in a Hilbert space that converges weakly is bounded. Can we use this to ensure that $T$ is a bounded operator?






share|cite|improve this answer











$endgroup$













  • $begingroup$
    So is the idea for me to use $tilde{T}$ to cancel out the operator norm in my final inequality?
    $endgroup$
    – Jack
    4 hours ago










  • $begingroup$
    @Jack no, that won't rescue the proof.
    $endgroup$
    – Umberto P.
    4 hours ago










  • $begingroup$
    New proof attempt. Please check if you can.
    $endgroup$
    – Jack
    4 hours ago










  • $begingroup$
    I am not familiar with that. I am only aware that given a family of linear operators $(T_{alpha})$ are such that $T_{alpha}:Erightarrow F$, where $E,F$ are Banach spaces. If $sup_{alphain A}|T_{alpha}x|<infty$ then $sup_{alphain A}|T_{alpha}|<infty$.
    $endgroup$
    – Jack
    1 min ago










  • $begingroup$
    Do you have a link to the corollary of Uniform Boundedness which you refer to?
    $endgroup$
    – Jack
    29 secs ago














5












5








5





$begingroup$

The problem is that we can't assume that $T$ has a finite norm. Before we add that condition about having an adjoint map $tilde{T}$, we're simply assuming that $T$ is a linear map.



In fact, a linear map between normed vector spaces is continuous if and only if it has a finite operator norm. You assumed the statement we were trying to prove.



Second attempt: The assumption here should have been that $x_nto x$, as in the others. Then, yes, $langle Tx_n,yrangle to langle Tx,yrangle$ for each $y$. This is real progress. But, as stated in the comments, it's weak convergence rather than convergence in norm. Not quite there.



Third attempt: No, $langle Tu,Turangle$ is not equal to $langle u,urangle$ - it's equal to $langle u,tilde{T}Turangle$, and you don't know what $tilde{T}T$ does. This is not helpful.



All, right, lets go back to the attempt that made some progress. Are you familiar with the uniform boundedness principle? One consequence of that theorem is that any sequence of points in a Hilbert space that converges weakly is bounded. Can we use this to ensure that $T$ is a bounded operator?






share|cite|improve this answer











$endgroup$



The problem is that we can't assume that $T$ has a finite norm. Before we add that condition about having an adjoint map $tilde{T}$, we're simply assuming that $T$ is a linear map.



In fact, a linear map between normed vector spaces is continuous if and only if it has a finite operator norm. You assumed the statement we were trying to prove.



Second attempt: The assumption here should have been that $x_nto x$, as in the others. Then, yes, $langle Tx_n,yrangle to langle Tx,yrangle$ for each $y$. This is real progress. But, as stated in the comments, it's weak convergence rather than convergence in norm. Not quite there.



Third attempt: No, $langle Tu,Turangle$ is not equal to $langle u,urangle$ - it's equal to $langle u,tilde{T}Turangle$, and you don't know what $tilde{T}T$ does. This is not helpful.



All, right, lets go back to the attempt that made some progress. Are you familiar with the uniform boundedness principle? One consequence of that theorem is that any sequence of points in a Hilbert space that converges weakly is bounded. Can we use this to ensure that $T$ is a bounded operator?







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited 2 hours ago

























answered 4 hours ago









jmerryjmerry

14.3k1629




14.3k1629












  • $begingroup$
    So is the idea for me to use $tilde{T}$ to cancel out the operator norm in my final inequality?
    $endgroup$
    – Jack
    4 hours ago










  • $begingroup$
    @Jack no, that won't rescue the proof.
    $endgroup$
    – Umberto P.
    4 hours ago










  • $begingroup$
    New proof attempt. Please check if you can.
    $endgroup$
    – Jack
    4 hours ago










  • $begingroup$
    I am not familiar with that. I am only aware that given a family of linear operators $(T_{alpha})$ are such that $T_{alpha}:Erightarrow F$, where $E,F$ are Banach spaces. If $sup_{alphain A}|T_{alpha}x|<infty$ then $sup_{alphain A}|T_{alpha}|<infty$.
    $endgroup$
    – Jack
    1 min ago










  • $begingroup$
    Do you have a link to the corollary of Uniform Boundedness which you refer to?
    $endgroup$
    – Jack
    29 secs ago


















  • $begingroup$
    So is the idea for me to use $tilde{T}$ to cancel out the operator norm in my final inequality?
    $endgroup$
    – Jack
    4 hours ago










  • $begingroup$
    @Jack no, that won't rescue the proof.
    $endgroup$
    – Umberto P.
    4 hours ago










  • $begingroup$
    New proof attempt. Please check if you can.
    $endgroup$
    – Jack
    4 hours ago










  • $begingroup$
    I am not familiar with that. I am only aware that given a family of linear operators $(T_{alpha})$ are such that $T_{alpha}:Erightarrow F$, where $E,F$ are Banach spaces. If $sup_{alphain A}|T_{alpha}x|<infty$ then $sup_{alphain A}|T_{alpha}|<infty$.
    $endgroup$
    – Jack
    1 min ago










  • $begingroup$
    Do you have a link to the corollary of Uniform Boundedness which you refer to?
    $endgroup$
    – Jack
    29 secs ago
















$begingroup$
So is the idea for me to use $tilde{T}$ to cancel out the operator norm in my final inequality?
$endgroup$
– Jack
4 hours ago




$begingroup$
So is the idea for me to use $tilde{T}$ to cancel out the operator norm in my final inequality?
$endgroup$
– Jack
4 hours ago












$begingroup$
@Jack no, that won't rescue the proof.
$endgroup$
– Umberto P.
4 hours ago




$begingroup$
@Jack no, that won't rescue the proof.
$endgroup$
– Umberto P.
4 hours ago












$begingroup$
New proof attempt. Please check if you can.
$endgroup$
– Jack
4 hours ago




$begingroup$
New proof attempt. Please check if you can.
$endgroup$
– Jack
4 hours ago












$begingroup$
I am not familiar with that. I am only aware that given a family of linear operators $(T_{alpha})$ are such that $T_{alpha}:Erightarrow F$, where $E,F$ are Banach spaces. If $sup_{alphain A}|T_{alpha}x|<infty$ then $sup_{alphain A}|T_{alpha}|<infty$.
$endgroup$
– Jack
1 min ago




$begingroup$
I am not familiar with that. I am only aware that given a family of linear operators $(T_{alpha})$ are such that $T_{alpha}:Erightarrow F$, where $E,F$ are Banach spaces. If $sup_{alphain A}|T_{alpha}x|<infty$ then $sup_{alphain A}|T_{alpha}|<infty$.
$endgroup$
– Jack
1 min ago












$begingroup$
Do you have a link to the corollary of Uniform Boundedness which you refer to?
$endgroup$
– Jack
29 secs ago




$begingroup$
Do you have a link to the corollary of Uniform Boundedness which you refer to?
$endgroup$
– Jack
29 secs ago


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3149977%2fcontinuity-of-linear-operator-between-hilbert-spaces%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Gersau Kjelder | Navigasjonsmeny46°59′0″N 8°31′0″E46°59′0″N...

Hestehale Innhaldsliste Hestehale på kvinner | Hestehale på menn | Galleri | Sjå òg |...

What is the “three and three hundred thousand syndrome”?Who wrote the book Arena?What five creatures were...