Uniformly continuous derivative implies existence of limitHow to show that a uniformly continuous function is...

How to verbalise code in Mathematica?

How to solve constants out of the internal energy equation?

How can I place the product on a social media post better?

How much cash can I safely carry into the USA and avoid civil forfeiture?

What is the most expensive material in the world that could be used to create Pun-Pun's lute?

Examples of non trivial equivalence relations , I mean equivalence relations without the expression " same ... as" in their definition?

What are the potential pitfalls when using metals as a currency?

How could Tony Stark make this in Endgame?

Will a top journal at least read my introduction?

How exactly does Hawking radiation decrease the mass of black holes?

Examples of subgroups where it's nontrivial to show closure under multiplication?

Error message with tabularx

Meaning of Bloch representation

How do I deal with a coworker that keeps asking to make small superficial changes to a report, and it is seriously triggering my anxiety?

Critique of timeline aesthetic

Controversial area of mathematics

What makes accurate emulation of old systems a difficult task?

If a warlock with the Repelling Blast invocation casts Eldritch Blast and hits, must the targets always be pushed back?

Why was the Spitfire's elliptical wing almost uncopied by other aircraft of World War 2?

How did Captain America manage to do this?

What is the strongest case that can be made in favour of the UK regaining some control over fishing policy after Brexit?

What route did the Hindenburg take when traveling from Germany to the U.S.?

How to creep the reader out with what seems like a normal person?

Phrase for the opposite of "foolproof"



Uniformly continuous derivative implies existence of limit


How to show that a uniformly continuous function is bounded?Simple Construction of a Uniformly Continuous Real Valued Function With No Derivative Anywhere In The Domain?Bounded derivative implies uniform continuity- does the domain need to be an open interval?Prove $f$ is uniformly continuous iff $ lim_{xto infty}f(x)=0$The product of uniformly continuous functions is not necessarily uniformly continuousIs $f$ uniformly continuous?Continuous function goes to zero at $pm infty$, show it is uniformly continuousDifficult limit problem involving sine and tangent$f$ is uniformly continuous if and only if the limits exist in $mathbb{R}$Relationship with uniformly continuous function and its derivative.













2












$begingroup$



Let $f in C^1([0, +infty))$. Suppose that $lim_{x rightarrow +infty} f(x)=L$ and $f'$ is uniformly continuous.



Show that $$lim_{x rightarrow +infty} f'(x) + f(x)=L$$




I tried to apply L'Hospital's Rule to $frac{e^xf(x)}{e^x}$ since $frac{d}{dx}e^xf(x)=e^x(f'(x)+f(x))$. It seems alright but I didn't use the uniform continuity of $f'$ and it doesn't work for the function $f(x)=frac{sin(x^2)}{x}$ whose derivative is $f'(x)=2cos(x^2)-frac{sin(x^2)}{x^2}$ since $lim_{x rightarrow +infty} f'(x)$ doesn't exist.



Any ideas? Thanks in advance.










share|cite|improve this question









$endgroup$












  • $begingroup$
    The L'Hospital trick won't work in cases where the limit of $[f(x) +f'(x)]$ does not exist as in your example.
    $endgroup$
    – RRL
    1 hour ago
















2












$begingroup$



Let $f in C^1([0, +infty))$. Suppose that $lim_{x rightarrow +infty} f(x)=L$ and $f'$ is uniformly continuous.



Show that $$lim_{x rightarrow +infty} f'(x) + f(x)=L$$




I tried to apply L'Hospital's Rule to $frac{e^xf(x)}{e^x}$ since $frac{d}{dx}e^xf(x)=e^x(f'(x)+f(x))$. It seems alright but I didn't use the uniform continuity of $f'$ and it doesn't work for the function $f(x)=frac{sin(x^2)}{x}$ whose derivative is $f'(x)=2cos(x^2)-frac{sin(x^2)}{x^2}$ since $lim_{x rightarrow +infty} f'(x)$ doesn't exist.



Any ideas? Thanks in advance.










share|cite|improve this question









$endgroup$












  • $begingroup$
    The L'Hospital trick won't work in cases where the limit of $[f(x) +f'(x)]$ does not exist as in your example.
    $endgroup$
    – RRL
    1 hour ago














2












2








2


1



$begingroup$



Let $f in C^1([0, +infty))$. Suppose that $lim_{x rightarrow +infty} f(x)=L$ and $f'$ is uniformly continuous.



Show that $$lim_{x rightarrow +infty} f'(x) + f(x)=L$$




I tried to apply L'Hospital's Rule to $frac{e^xf(x)}{e^x}$ since $frac{d}{dx}e^xf(x)=e^x(f'(x)+f(x))$. It seems alright but I didn't use the uniform continuity of $f'$ and it doesn't work for the function $f(x)=frac{sin(x^2)}{x}$ whose derivative is $f'(x)=2cos(x^2)-frac{sin(x^2)}{x^2}$ since $lim_{x rightarrow +infty} f'(x)$ doesn't exist.



Any ideas? Thanks in advance.










share|cite|improve this question









$endgroup$





Let $f in C^1([0, +infty))$. Suppose that $lim_{x rightarrow +infty} f(x)=L$ and $f'$ is uniformly continuous.



Show that $$lim_{x rightarrow +infty} f'(x) + f(x)=L$$




I tried to apply L'Hospital's Rule to $frac{e^xf(x)}{e^x}$ since $frac{d}{dx}e^xf(x)=e^x(f'(x)+f(x))$. It seems alright but I didn't use the uniform continuity of $f'$ and it doesn't work for the function $f(x)=frac{sin(x^2)}{x}$ whose derivative is $f'(x)=2cos(x^2)-frac{sin(x^2)}{x^2}$ since $lim_{x rightarrow +infty} f'(x)$ doesn't exist.



Any ideas? Thanks in advance.







real-analysis






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked 2 hours ago









lzralbulzralbu

697512




697512












  • $begingroup$
    The L'Hospital trick won't work in cases where the limit of $[f(x) +f'(x)]$ does not exist as in your example.
    $endgroup$
    – RRL
    1 hour ago


















  • $begingroup$
    The L'Hospital trick won't work in cases where the limit of $[f(x) +f'(x)]$ does not exist as in your example.
    $endgroup$
    – RRL
    1 hour ago
















$begingroup$
The L'Hospital trick won't work in cases where the limit of $[f(x) +f'(x)]$ does not exist as in your example.
$endgroup$
– RRL
1 hour ago




$begingroup$
The L'Hospital trick won't work in cases where the limit of $[f(x) +f'(x)]$ does not exist as in your example.
$endgroup$
– RRL
1 hour ago










1 Answer
1






active

oldest

votes


















3












$begingroup$

We have $lim_{x to infty} f'(x) = 0$ because,



$$int_0^x f'(t) , dt = f(x) - f(0), \int_0^infty f'(t) , dt = lim_{x to infty}f(x) - f(0) = L - f(0) quad (text{convergent})$$



and $f'$ is uniformly continuous.



To prove this assume that $lim_{x to infty}f'(x) =0$ does not hold and arrive at contradiction with the fact that the integral of $f'$ is convergent.



If $lim_{x to infty} f'(x) = 0$ does not hold then there exists $epsilon_0 > 0$ and a sequence $x_n to infty$ such that $|f'(x_n)| geqslant epsilon_0$ for all $n$. Next apply uniform continuity.



Assume WLOG that $f'(x_n) geqslant epsilon_0$.



There exists by uniform continuity $delta > 0$ such that $|f'(t) - f'(x_n)| < epsilon_0/2 implies f'(t) > epsilon_0/2$ for all $t in [x_n - delta,x_n + delta],$ and



$$ int_{x_n - delta}^{x_n + delta} f'(t) , dt > epsilondelta$$



This violates the Cauchy criterion for convergence of the improper integral since $x_n$ can be arbitrarily large.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    I can help you further, but first let me know if these hints makes it obvious to you now.
    $endgroup$
    – RRL
    1 hour ago










  • $begingroup$
    I still can't see how to use uniform continuity. Could you, please, explain it further?
    $endgroup$
    – lzralbu
    1 hour ago










  • $begingroup$
    I shall do so...
    $endgroup$
    – RRL
    1 hour ago










  • $begingroup$
    What about the example given in the question?
    $endgroup$
    – Jens Schwaiger
    54 mins ago










  • $begingroup$
    @JensSchwaiger: $cos(x^2)$ is not uniformly continuous on $[0,infty)$. OP introduced this as a counterexample for the L'Hospital trick. It is not relevant to the actual question where the assumption is that $f'$ is uniformly continuous.
    $endgroup$
    – RRL
    39 mins ago












Your Answer








StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3205125%2funiformly-continuous-derivative-implies-existence-of-limit%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









3












$begingroup$

We have $lim_{x to infty} f'(x) = 0$ because,



$$int_0^x f'(t) , dt = f(x) - f(0), \int_0^infty f'(t) , dt = lim_{x to infty}f(x) - f(0) = L - f(0) quad (text{convergent})$$



and $f'$ is uniformly continuous.



To prove this assume that $lim_{x to infty}f'(x) =0$ does not hold and arrive at contradiction with the fact that the integral of $f'$ is convergent.



If $lim_{x to infty} f'(x) = 0$ does not hold then there exists $epsilon_0 > 0$ and a sequence $x_n to infty$ such that $|f'(x_n)| geqslant epsilon_0$ for all $n$. Next apply uniform continuity.



Assume WLOG that $f'(x_n) geqslant epsilon_0$.



There exists by uniform continuity $delta > 0$ such that $|f'(t) - f'(x_n)| < epsilon_0/2 implies f'(t) > epsilon_0/2$ for all $t in [x_n - delta,x_n + delta],$ and



$$ int_{x_n - delta}^{x_n + delta} f'(t) , dt > epsilondelta$$



This violates the Cauchy criterion for convergence of the improper integral since $x_n$ can be arbitrarily large.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    I can help you further, but first let me know if these hints makes it obvious to you now.
    $endgroup$
    – RRL
    1 hour ago










  • $begingroup$
    I still can't see how to use uniform continuity. Could you, please, explain it further?
    $endgroup$
    – lzralbu
    1 hour ago










  • $begingroup$
    I shall do so...
    $endgroup$
    – RRL
    1 hour ago










  • $begingroup$
    What about the example given in the question?
    $endgroup$
    – Jens Schwaiger
    54 mins ago










  • $begingroup$
    @JensSchwaiger: $cos(x^2)$ is not uniformly continuous on $[0,infty)$. OP introduced this as a counterexample for the L'Hospital trick. It is not relevant to the actual question where the assumption is that $f'$ is uniformly continuous.
    $endgroup$
    – RRL
    39 mins ago
















3












$begingroup$

We have $lim_{x to infty} f'(x) = 0$ because,



$$int_0^x f'(t) , dt = f(x) - f(0), \int_0^infty f'(t) , dt = lim_{x to infty}f(x) - f(0) = L - f(0) quad (text{convergent})$$



and $f'$ is uniformly continuous.



To prove this assume that $lim_{x to infty}f'(x) =0$ does not hold and arrive at contradiction with the fact that the integral of $f'$ is convergent.



If $lim_{x to infty} f'(x) = 0$ does not hold then there exists $epsilon_0 > 0$ and a sequence $x_n to infty$ such that $|f'(x_n)| geqslant epsilon_0$ for all $n$. Next apply uniform continuity.



Assume WLOG that $f'(x_n) geqslant epsilon_0$.



There exists by uniform continuity $delta > 0$ such that $|f'(t) - f'(x_n)| < epsilon_0/2 implies f'(t) > epsilon_0/2$ for all $t in [x_n - delta,x_n + delta],$ and



$$ int_{x_n - delta}^{x_n + delta} f'(t) , dt > epsilondelta$$



This violates the Cauchy criterion for convergence of the improper integral since $x_n$ can be arbitrarily large.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    I can help you further, but first let me know if these hints makes it obvious to you now.
    $endgroup$
    – RRL
    1 hour ago










  • $begingroup$
    I still can't see how to use uniform continuity. Could you, please, explain it further?
    $endgroup$
    – lzralbu
    1 hour ago










  • $begingroup$
    I shall do so...
    $endgroup$
    – RRL
    1 hour ago










  • $begingroup$
    What about the example given in the question?
    $endgroup$
    – Jens Schwaiger
    54 mins ago










  • $begingroup$
    @JensSchwaiger: $cos(x^2)$ is not uniformly continuous on $[0,infty)$. OP introduced this as a counterexample for the L'Hospital trick. It is not relevant to the actual question where the assumption is that $f'$ is uniformly continuous.
    $endgroup$
    – RRL
    39 mins ago














3












3








3





$begingroup$

We have $lim_{x to infty} f'(x) = 0$ because,



$$int_0^x f'(t) , dt = f(x) - f(0), \int_0^infty f'(t) , dt = lim_{x to infty}f(x) - f(0) = L - f(0) quad (text{convergent})$$



and $f'$ is uniformly continuous.



To prove this assume that $lim_{x to infty}f'(x) =0$ does not hold and arrive at contradiction with the fact that the integral of $f'$ is convergent.



If $lim_{x to infty} f'(x) = 0$ does not hold then there exists $epsilon_0 > 0$ and a sequence $x_n to infty$ such that $|f'(x_n)| geqslant epsilon_0$ for all $n$. Next apply uniform continuity.



Assume WLOG that $f'(x_n) geqslant epsilon_0$.



There exists by uniform continuity $delta > 0$ such that $|f'(t) - f'(x_n)| < epsilon_0/2 implies f'(t) > epsilon_0/2$ for all $t in [x_n - delta,x_n + delta],$ and



$$ int_{x_n - delta}^{x_n + delta} f'(t) , dt > epsilondelta$$



This violates the Cauchy criterion for convergence of the improper integral since $x_n$ can be arbitrarily large.






share|cite|improve this answer











$endgroup$



We have $lim_{x to infty} f'(x) = 0$ because,



$$int_0^x f'(t) , dt = f(x) - f(0), \int_0^infty f'(t) , dt = lim_{x to infty}f(x) - f(0) = L - f(0) quad (text{convergent})$$



and $f'$ is uniformly continuous.



To prove this assume that $lim_{x to infty}f'(x) =0$ does not hold and arrive at contradiction with the fact that the integral of $f'$ is convergent.



If $lim_{x to infty} f'(x) = 0$ does not hold then there exists $epsilon_0 > 0$ and a sequence $x_n to infty$ such that $|f'(x_n)| geqslant epsilon_0$ for all $n$. Next apply uniform continuity.



Assume WLOG that $f'(x_n) geqslant epsilon_0$.



There exists by uniform continuity $delta > 0$ such that $|f'(t) - f'(x_n)| < epsilon_0/2 implies f'(t) > epsilon_0/2$ for all $t in [x_n - delta,x_n + delta],$ and



$$ int_{x_n - delta}^{x_n + delta} f'(t) , dt > epsilondelta$$



This violates the Cauchy criterion for convergence of the improper integral since $x_n$ can be arbitrarily large.







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited 1 hour ago

























answered 1 hour ago









RRLRRL

54.1k52675




54.1k52675












  • $begingroup$
    I can help you further, but first let me know if these hints makes it obvious to you now.
    $endgroup$
    – RRL
    1 hour ago










  • $begingroup$
    I still can't see how to use uniform continuity. Could you, please, explain it further?
    $endgroup$
    – lzralbu
    1 hour ago










  • $begingroup$
    I shall do so...
    $endgroup$
    – RRL
    1 hour ago










  • $begingroup$
    What about the example given in the question?
    $endgroup$
    – Jens Schwaiger
    54 mins ago










  • $begingroup$
    @JensSchwaiger: $cos(x^2)$ is not uniformly continuous on $[0,infty)$. OP introduced this as a counterexample for the L'Hospital trick. It is not relevant to the actual question where the assumption is that $f'$ is uniformly continuous.
    $endgroup$
    – RRL
    39 mins ago


















  • $begingroup$
    I can help you further, but first let me know if these hints makes it obvious to you now.
    $endgroup$
    – RRL
    1 hour ago










  • $begingroup$
    I still can't see how to use uniform continuity. Could you, please, explain it further?
    $endgroup$
    – lzralbu
    1 hour ago










  • $begingroup$
    I shall do so...
    $endgroup$
    – RRL
    1 hour ago










  • $begingroup$
    What about the example given in the question?
    $endgroup$
    – Jens Schwaiger
    54 mins ago










  • $begingroup$
    @JensSchwaiger: $cos(x^2)$ is not uniformly continuous on $[0,infty)$. OP introduced this as a counterexample for the L'Hospital trick. It is not relevant to the actual question where the assumption is that $f'$ is uniformly continuous.
    $endgroup$
    – RRL
    39 mins ago
















$begingroup$
I can help you further, but first let me know if these hints makes it obvious to you now.
$endgroup$
– RRL
1 hour ago




$begingroup$
I can help you further, but first let me know if these hints makes it obvious to you now.
$endgroup$
– RRL
1 hour ago












$begingroup$
I still can't see how to use uniform continuity. Could you, please, explain it further?
$endgroup$
– lzralbu
1 hour ago




$begingroup$
I still can't see how to use uniform continuity. Could you, please, explain it further?
$endgroup$
– lzralbu
1 hour ago












$begingroup$
I shall do so...
$endgroup$
– RRL
1 hour ago




$begingroup$
I shall do so...
$endgroup$
– RRL
1 hour ago












$begingroup$
What about the example given in the question?
$endgroup$
– Jens Schwaiger
54 mins ago




$begingroup$
What about the example given in the question?
$endgroup$
– Jens Schwaiger
54 mins ago












$begingroup$
@JensSchwaiger: $cos(x^2)$ is not uniformly continuous on $[0,infty)$. OP introduced this as a counterexample for the L'Hospital trick. It is not relevant to the actual question where the assumption is that $f'$ is uniformly continuous.
$endgroup$
– RRL
39 mins ago




$begingroup$
@JensSchwaiger: $cos(x^2)$ is not uniformly continuous on $[0,infty)$. OP introduced this as a counterexample for the L'Hospital trick. It is not relevant to the actual question where the assumption is that $f'$ is uniformly continuous.
$endgroup$
– RRL
39 mins ago


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3205125%2funiformly-continuous-derivative-implies-existence-of-limit%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

What is the “three and three hundred thousand syndrome”?Who wrote the book Arena?What five creatures were...

Gersau Kjelder | Navigasjonsmeny46°59′0″N 8°31′0″E46°59′0″N...

Hestehale Innhaldsliste Hestehale på kvinner | Hestehale på menn | Galleri | Sjå òg |...