Solving Integral Equation by Converting to Differential Equations The Next CEO of Stack...

Return the Closest Prime Number

What is ( CFMCC ) on ILS approach chart?

If the heap is initialized for security, then why is the stack uninitialized?

What flight has the highest ratio of time difference to flight time?

Skipping indices in a product

Why has the US not been more assertive in confronting Russia in recent years?

Indicator light circuit

How did the Bene Gesserit know how to make a Kwisatz Haderach?

Why don't programming languages automatically manage the synchronous/asynchronous problem?

In excess I'm lethal

Can we say or write : "No, it'sn't"?

Which tube will fit a -(700 x 25c) wheel?

Is it professional to write unrelated content in an almost-empty email?

Workaholic Formal/Informal

What happened in Rome, when the western empire "fell"?

What can we do to stop prior company from asking us questions?

Novel about a guy who is possessed by the divine essence and the world ends?

Interfacing a button to MCU (and PC) with 50m long cable

What's the best way to handle refactoring a big file?

Why do we use the plural of movies in this phrase "We went to the movies last night."?

What was the first Unix version to run on a microcomputer?

Extending anchors in TikZ

Are there any limitations on attacking while grappling?

Can you replace a racial trait cantrip when leveling up?



Solving Integral Equation by Converting to Differential Equations



The Next CEO of Stack OverflowAre there methods to solve coupled integral and integro-differential equations?Voltera equationSolve integral equation by converting to differential equationHow can I solve this integral equation by converting it to a differential equationConverting a integral equation to differential equationSolving integro-differential equation - numericallySolution of Differential equation as an integral equationConverting Differential Operator to Integral Equationreference for converting an integro-differential equation to a differential algebraic equationSolving second order ordinary differential equation with variable constants












2












$begingroup$


Consider the problem



$$phi(x) = x - int_0^x(x-s)phi(s),ds$$



How can we solve this by converting to a differential equation?










share|cite|improve this question









$endgroup$

















    2












    $begingroup$


    Consider the problem



    $$phi(x) = x - int_0^x(x-s)phi(s),ds$$



    How can we solve this by converting to a differential equation?










    share|cite|improve this question









    $endgroup$















      2












      2








      2





      $begingroup$


      Consider the problem



      $$phi(x) = x - int_0^x(x-s)phi(s),ds$$



      How can we solve this by converting to a differential equation?










      share|cite|improve this question









      $endgroup$




      Consider the problem



      $$phi(x) = x - int_0^x(x-s)phi(s),ds$$



      How can we solve this by converting to a differential equation?







      ordinary-differential-equations integral-equations integro-differential-equations






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked 5 hours ago









      LightningStrikeLightningStrike

      555




      555






















          2 Answers
          2






          active

          oldest

          votes


















          4












          $begingroup$

          We have that
          $$phi(x)=x-xint_0^x phi(s) mathrm{d} s + int_0^x s phi(s)mathrm{d}s$$
          From this, we can see that $phi(0)=0$.
          We can differentiate both sides and use the product rule and the FTC1 to get:
          $$phi'(x)=1-int_0^x phi(s) mathrm{d}s -x phi(x)+xphi(x)$$
          $$phi'(x)=1-int_0^x phi(s) mathrm{d} s$$
          From this, we can see that $phi'(0)=1$. We can differentiate it again:
          $$phi''(x)=-phi(x)$$
          Which is an alternative definition of the $sin$ function.






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            In fact, the only valid solution for $phi(x)$ is $sin{(x)}$ because of the original equation.
            $endgroup$
            – Peter Foreman
            4 hours ago










          • $begingroup$
            @PeterForemann Yes. I calculated $phi(0)$ and $phi'(0)$ from the integral equation to avoid the lengthy substitution and integration.
            $endgroup$
            – Botond
            4 hours ago












          • $begingroup$
            Thank you for your answer! Do you mind if I ask how you got $phi ''(x) = -phi (x)$ by differentiating $phi ' (x)$? I don't understand the steps taken.
            $endgroup$
            – LightningStrike
            4 hours ago










          • $begingroup$
            @LightningStrike Do you see how did I get $phi'(x)=1-int_0^x phi(s) mathrm{d}s$?
            $endgroup$
            – Botond
            4 hours ago



















          1












          $begingroup$

          Differentiating both sides using Leibniz rule :



          $${phi }'(x)=1-int_{0}^{x}{phi (s)ds}$$



          Differentiate again:



          $${phi }''(x)=-phi (x)$$






          share|cite|improve this answer











          $endgroup$









          • 1




            $begingroup$
            Your answer is great, but Leibniz's rule is an overkill here, because it requires partial derivatives and the proof is based on measure theory.
            $endgroup$
            – Botond
            3 hours ago










          • $begingroup$
            may be you are right...but this is a common technique in an introductory course of integral equations.
            $endgroup$
            – logo
            3 hours ago












          • $begingroup$
            I didn't take any course in integral equations, but we used Leibniz's rule during a physics course (without a proof), and it's a really useful tool to have. And we don't really know which is the appropriate solution to the questioner.
            $endgroup$
            – Botond
            3 hours ago














          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3167442%2fsolving-integral-equation-by-converting-to-differential-equations%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          2 Answers
          2






          active

          oldest

          votes








          2 Answers
          2






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          4












          $begingroup$

          We have that
          $$phi(x)=x-xint_0^x phi(s) mathrm{d} s + int_0^x s phi(s)mathrm{d}s$$
          From this, we can see that $phi(0)=0$.
          We can differentiate both sides and use the product rule and the FTC1 to get:
          $$phi'(x)=1-int_0^x phi(s) mathrm{d}s -x phi(x)+xphi(x)$$
          $$phi'(x)=1-int_0^x phi(s) mathrm{d} s$$
          From this, we can see that $phi'(0)=1$. We can differentiate it again:
          $$phi''(x)=-phi(x)$$
          Which is an alternative definition of the $sin$ function.






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            In fact, the only valid solution for $phi(x)$ is $sin{(x)}$ because of the original equation.
            $endgroup$
            – Peter Foreman
            4 hours ago










          • $begingroup$
            @PeterForemann Yes. I calculated $phi(0)$ and $phi'(0)$ from the integral equation to avoid the lengthy substitution and integration.
            $endgroup$
            – Botond
            4 hours ago












          • $begingroup$
            Thank you for your answer! Do you mind if I ask how you got $phi ''(x) = -phi (x)$ by differentiating $phi ' (x)$? I don't understand the steps taken.
            $endgroup$
            – LightningStrike
            4 hours ago










          • $begingroup$
            @LightningStrike Do you see how did I get $phi'(x)=1-int_0^x phi(s) mathrm{d}s$?
            $endgroup$
            – Botond
            4 hours ago
















          4












          $begingroup$

          We have that
          $$phi(x)=x-xint_0^x phi(s) mathrm{d} s + int_0^x s phi(s)mathrm{d}s$$
          From this, we can see that $phi(0)=0$.
          We can differentiate both sides and use the product rule and the FTC1 to get:
          $$phi'(x)=1-int_0^x phi(s) mathrm{d}s -x phi(x)+xphi(x)$$
          $$phi'(x)=1-int_0^x phi(s) mathrm{d} s$$
          From this, we can see that $phi'(0)=1$. We can differentiate it again:
          $$phi''(x)=-phi(x)$$
          Which is an alternative definition of the $sin$ function.






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            In fact, the only valid solution for $phi(x)$ is $sin{(x)}$ because of the original equation.
            $endgroup$
            – Peter Foreman
            4 hours ago










          • $begingroup$
            @PeterForemann Yes. I calculated $phi(0)$ and $phi'(0)$ from the integral equation to avoid the lengthy substitution and integration.
            $endgroup$
            – Botond
            4 hours ago












          • $begingroup$
            Thank you for your answer! Do you mind if I ask how you got $phi ''(x) = -phi (x)$ by differentiating $phi ' (x)$? I don't understand the steps taken.
            $endgroup$
            – LightningStrike
            4 hours ago










          • $begingroup$
            @LightningStrike Do you see how did I get $phi'(x)=1-int_0^x phi(s) mathrm{d}s$?
            $endgroup$
            – Botond
            4 hours ago














          4












          4








          4





          $begingroup$

          We have that
          $$phi(x)=x-xint_0^x phi(s) mathrm{d} s + int_0^x s phi(s)mathrm{d}s$$
          From this, we can see that $phi(0)=0$.
          We can differentiate both sides and use the product rule and the FTC1 to get:
          $$phi'(x)=1-int_0^x phi(s) mathrm{d}s -x phi(x)+xphi(x)$$
          $$phi'(x)=1-int_0^x phi(s) mathrm{d} s$$
          From this, we can see that $phi'(0)=1$. We can differentiate it again:
          $$phi''(x)=-phi(x)$$
          Which is an alternative definition of the $sin$ function.






          share|cite|improve this answer











          $endgroup$



          We have that
          $$phi(x)=x-xint_0^x phi(s) mathrm{d} s + int_0^x s phi(s)mathrm{d}s$$
          From this, we can see that $phi(0)=0$.
          We can differentiate both sides and use the product rule and the FTC1 to get:
          $$phi'(x)=1-int_0^x phi(s) mathrm{d}s -x phi(x)+xphi(x)$$
          $$phi'(x)=1-int_0^x phi(s) mathrm{d} s$$
          From this, we can see that $phi'(0)=1$. We can differentiate it again:
          $$phi''(x)=-phi(x)$$
          Which is an alternative definition of the $sin$ function.







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited 4 hours ago

























          answered 4 hours ago









          BotondBotond

          6,49331034




          6,49331034












          • $begingroup$
            In fact, the only valid solution for $phi(x)$ is $sin{(x)}$ because of the original equation.
            $endgroup$
            – Peter Foreman
            4 hours ago










          • $begingroup$
            @PeterForemann Yes. I calculated $phi(0)$ and $phi'(0)$ from the integral equation to avoid the lengthy substitution and integration.
            $endgroup$
            – Botond
            4 hours ago












          • $begingroup$
            Thank you for your answer! Do you mind if I ask how you got $phi ''(x) = -phi (x)$ by differentiating $phi ' (x)$? I don't understand the steps taken.
            $endgroup$
            – LightningStrike
            4 hours ago










          • $begingroup$
            @LightningStrike Do you see how did I get $phi'(x)=1-int_0^x phi(s) mathrm{d}s$?
            $endgroup$
            – Botond
            4 hours ago


















          • $begingroup$
            In fact, the only valid solution for $phi(x)$ is $sin{(x)}$ because of the original equation.
            $endgroup$
            – Peter Foreman
            4 hours ago










          • $begingroup$
            @PeterForemann Yes. I calculated $phi(0)$ and $phi'(0)$ from the integral equation to avoid the lengthy substitution and integration.
            $endgroup$
            – Botond
            4 hours ago












          • $begingroup$
            Thank you for your answer! Do you mind if I ask how you got $phi ''(x) = -phi (x)$ by differentiating $phi ' (x)$? I don't understand the steps taken.
            $endgroup$
            – LightningStrike
            4 hours ago










          • $begingroup$
            @LightningStrike Do you see how did I get $phi'(x)=1-int_0^x phi(s) mathrm{d}s$?
            $endgroup$
            – Botond
            4 hours ago
















          $begingroup$
          In fact, the only valid solution for $phi(x)$ is $sin{(x)}$ because of the original equation.
          $endgroup$
          – Peter Foreman
          4 hours ago




          $begingroup$
          In fact, the only valid solution for $phi(x)$ is $sin{(x)}$ because of the original equation.
          $endgroup$
          – Peter Foreman
          4 hours ago












          $begingroup$
          @PeterForemann Yes. I calculated $phi(0)$ and $phi'(0)$ from the integral equation to avoid the lengthy substitution and integration.
          $endgroup$
          – Botond
          4 hours ago






          $begingroup$
          @PeterForemann Yes. I calculated $phi(0)$ and $phi'(0)$ from the integral equation to avoid the lengthy substitution and integration.
          $endgroup$
          – Botond
          4 hours ago














          $begingroup$
          Thank you for your answer! Do you mind if I ask how you got $phi ''(x) = -phi (x)$ by differentiating $phi ' (x)$? I don't understand the steps taken.
          $endgroup$
          – LightningStrike
          4 hours ago




          $begingroup$
          Thank you for your answer! Do you mind if I ask how you got $phi ''(x) = -phi (x)$ by differentiating $phi ' (x)$? I don't understand the steps taken.
          $endgroup$
          – LightningStrike
          4 hours ago












          $begingroup$
          @LightningStrike Do you see how did I get $phi'(x)=1-int_0^x phi(s) mathrm{d}s$?
          $endgroup$
          – Botond
          4 hours ago




          $begingroup$
          @LightningStrike Do you see how did I get $phi'(x)=1-int_0^x phi(s) mathrm{d}s$?
          $endgroup$
          – Botond
          4 hours ago











          1












          $begingroup$

          Differentiating both sides using Leibniz rule :



          $${phi }'(x)=1-int_{0}^{x}{phi (s)ds}$$



          Differentiate again:



          $${phi }''(x)=-phi (x)$$






          share|cite|improve this answer











          $endgroup$









          • 1




            $begingroup$
            Your answer is great, but Leibniz's rule is an overkill here, because it requires partial derivatives and the proof is based on measure theory.
            $endgroup$
            – Botond
            3 hours ago










          • $begingroup$
            may be you are right...but this is a common technique in an introductory course of integral equations.
            $endgroup$
            – logo
            3 hours ago












          • $begingroup$
            I didn't take any course in integral equations, but we used Leibniz's rule during a physics course (without a proof), and it's a really useful tool to have. And we don't really know which is the appropriate solution to the questioner.
            $endgroup$
            – Botond
            3 hours ago


















          1












          $begingroup$

          Differentiating both sides using Leibniz rule :



          $${phi }'(x)=1-int_{0}^{x}{phi (s)ds}$$



          Differentiate again:



          $${phi }''(x)=-phi (x)$$






          share|cite|improve this answer











          $endgroup$









          • 1




            $begingroup$
            Your answer is great, but Leibniz's rule is an overkill here, because it requires partial derivatives and the proof is based on measure theory.
            $endgroup$
            – Botond
            3 hours ago










          • $begingroup$
            may be you are right...but this is a common technique in an introductory course of integral equations.
            $endgroup$
            – logo
            3 hours ago












          • $begingroup$
            I didn't take any course in integral equations, but we used Leibniz's rule during a physics course (without a proof), and it's a really useful tool to have. And we don't really know which is the appropriate solution to the questioner.
            $endgroup$
            – Botond
            3 hours ago
















          1












          1








          1





          $begingroup$

          Differentiating both sides using Leibniz rule :



          $${phi }'(x)=1-int_{0}^{x}{phi (s)ds}$$



          Differentiate again:



          $${phi }''(x)=-phi (x)$$






          share|cite|improve this answer











          $endgroup$



          Differentiating both sides using Leibniz rule :



          $${phi }'(x)=1-int_{0}^{x}{phi (s)ds}$$



          Differentiate again:



          $${phi }''(x)=-phi (x)$$







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited 4 hours ago

























          answered 4 hours ago









          logologo

          1048




          1048








          • 1




            $begingroup$
            Your answer is great, but Leibniz's rule is an overkill here, because it requires partial derivatives and the proof is based on measure theory.
            $endgroup$
            – Botond
            3 hours ago










          • $begingroup$
            may be you are right...but this is a common technique in an introductory course of integral equations.
            $endgroup$
            – logo
            3 hours ago












          • $begingroup$
            I didn't take any course in integral equations, but we used Leibniz's rule during a physics course (without a proof), and it's a really useful tool to have. And we don't really know which is the appropriate solution to the questioner.
            $endgroup$
            – Botond
            3 hours ago
















          • 1




            $begingroup$
            Your answer is great, but Leibniz's rule is an overkill here, because it requires partial derivatives and the proof is based on measure theory.
            $endgroup$
            – Botond
            3 hours ago










          • $begingroup$
            may be you are right...but this is a common technique in an introductory course of integral equations.
            $endgroup$
            – logo
            3 hours ago












          • $begingroup$
            I didn't take any course in integral equations, but we used Leibniz's rule during a physics course (without a proof), and it's a really useful tool to have. And we don't really know which is the appropriate solution to the questioner.
            $endgroup$
            – Botond
            3 hours ago










          1




          1




          $begingroup$
          Your answer is great, but Leibniz's rule is an overkill here, because it requires partial derivatives and the proof is based on measure theory.
          $endgroup$
          – Botond
          3 hours ago




          $begingroup$
          Your answer is great, but Leibniz's rule is an overkill here, because it requires partial derivatives and the proof is based on measure theory.
          $endgroup$
          – Botond
          3 hours ago












          $begingroup$
          may be you are right...but this is a common technique in an introductory course of integral equations.
          $endgroup$
          – logo
          3 hours ago






          $begingroup$
          may be you are right...but this is a common technique in an introductory course of integral equations.
          $endgroup$
          – logo
          3 hours ago














          $begingroup$
          I didn't take any course in integral equations, but we used Leibniz's rule during a physics course (without a proof), and it's a really useful tool to have. And we don't really know which is the appropriate solution to the questioner.
          $endgroup$
          – Botond
          3 hours ago






          $begingroup$
          I didn't take any course in integral equations, but we used Leibniz's rule during a physics course (without a proof), and it's a really useful tool to have. And we don't really know which is the appropriate solution to the questioner.
          $endgroup$
          – Botond
          3 hours ago




















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3167442%2fsolving-integral-equation-by-converting-to-differential-equations%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          What is the “three and three hundred thousand syndrome”?Who wrote the book Arena?What five creatures were...

          Gersau Kjelder | Navigasjonsmeny46°59′0″N 8°31′0″E46°59′0″N...

          Hestehale Innhaldsliste Hestehale på kvinner | Hestehale på menn | Galleri | Sjå òg |...