How do I transpose the 1st and -1th levels of an arbitrarily nested array? The Next CEO of...

Does it take more energy to get to Venus or to Mars?

Several mode to write the symbol of a vector

Why has the US not been more assertive in confronting Russia in recent years?

Why do professional authors make "consistency" mistakes? And how to avoid them?

Is it professional to write unrelated content in an almost-empty email?

In excess I'm lethal

Why do we use the plural of movies in this phrase "We went to the movies last night."?

Help understanding this unsettling image of Titan, Epimetheus, and Saturn's rings?

What is the purpose of the Evocation wizard's Potent Cantrip feature?

Would this house-rule that treats advantage as a +1 to the roll instead (and disadvantage as -1) and allows them to stack be balanced?

Is there a way to save my career from absolute disaster?

How do we know the LHC results are robust?

Why do airplanes bank sharply to the right after air-to-air refueling?

Received an invoice from my ex-employer billing me for training; how to handle?

How did people program for Consoles with multiple CPUs?

Preparing Indesign booklet with .psd graphics for print

Why does the UK parliament need a vote on the political declaration?

How do I transpose the 1st and -1th levels of an arbitrarily nested array?

Rotate a column

Can you replace a racial trait cantrip when leveling up?

Should I tutor a student who I know has cheated on their homework?

WOW air has ceased operation, can I get my tickets refunded?

Return the Closest Prime Number

What happened in Rome, when the western empire "fell"?



How do I transpose the 1st and -1th levels of an arbitrarily nested array?



The Next CEO of Stack OverflowEmulating R data frame getters with UpValuesQuickly pruning elements in one structured array that exist in a separate unordered arrayJoining sub-lists nested two levels deep in a list`Part` like `Delete`: How to delete list of columns or arbitrarily deeper levelsHow to mesh a region using adaptive cubic elementsHow to efficiently Flatten nested lists while preserving select levels?Distribute elements of one line across arbitrary dimension of another listDeep level nested list addition`Transpose` nested `Association`Reformatting the pattern inside a list












6












$begingroup$


Is there a straightforward way to convert



arr = {
{a, b}, {a, b}, {{{a, b}, {a, b}, {a, b}}, {{a, b}, {a, b}, {a, b}}}
};


to:



{{a, a, {{a, a, a}, {a, a, a}}}, {b, b, {{b, b, b}, {b, b, b}}}}


?



I need to swap the first and last dimension. Which should in principle be possible, because, although arr does not have a fixed structure, the 'bottom' is always uniform:



Level[arr, {-2}]



{{a, b}, {a, b}, {a, b}, {a, b}, {a, b}, {a, b}, {a, b}, {a, b}}



Had Transpose/Flatten/MapThread accepted a negative level specification it would have been easy. That is not the case.



One can think about that question as: How do I create arr2 so that arr[[whatever__, y_]] == arr2[[y, whatever__]]?



EDIT:



In general Level[arr, {-2}] should be a rectangular array, but rows do not need to be the same.



So this:



{{a1, b1}, {{{a2, b2}, {a3, b3}}, {{a4, b4}, {a5, b5}, {a6, b6}}}, {{{{a7,b7}}}} };


should end up:



{ {a1, {{a2, a3}, {a4, a5, a6}}, {{{a7}}} }, ...};









share|improve this question











$endgroup$












  • $begingroup$
    Not a solution, but Flatten[MapIndexed[RotateRight[#2] -> #1 &, arr, {-1}]] gives you a list of rules of what needs to be constructed. I don't know of a way to construct it though: SparseArray does not construct ragged structures.
    $endgroup$
    – Roman
    5 hours ago










  • $begingroup$
    Maybe something along the lines of arr /. {{{a,b}->a},{{a,b}->b}}? Or perhaps more generally, arr /. {{a_?VectorQ :> First@a}, {a_?VectorQ :> Last@a}}?
    $endgroup$
    – Carl Woll
    5 hours ago












  • $begingroup$
    Does your list always contain {a,b} at the lowest level, or can there be anything there as long as they're all of same length?
    $endgroup$
    – Roman
    5 hours ago












  • $begingroup$
    @Roman Level[arr, {-2}]` should be a rectangular array but rows do not need to be the same.
    $endgroup$
    – Kuba
    5 hours ago










  • $begingroup$
    @Kuba maybe you can come up with a recursion that constructs the result from the list of rules I gave 4 lines up? That would be a handy tool to have in any case.
    $endgroup$
    – Roman
    5 hours ago


















6












$begingroup$


Is there a straightforward way to convert



arr = {
{a, b}, {a, b}, {{{a, b}, {a, b}, {a, b}}, {{a, b}, {a, b}, {a, b}}}
};


to:



{{a, a, {{a, a, a}, {a, a, a}}}, {b, b, {{b, b, b}, {b, b, b}}}}


?



I need to swap the first and last dimension. Which should in principle be possible, because, although arr does not have a fixed structure, the 'bottom' is always uniform:



Level[arr, {-2}]



{{a, b}, {a, b}, {a, b}, {a, b}, {a, b}, {a, b}, {a, b}, {a, b}}



Had Transpose/Flatten/MapThread accepted a negative level specification it would have been easy. That is not the case.



One can think about that question as: How do I create arr2 so that arr[[whatever__, y_]] == arr2[[y, whatever__]]?



EDIT:



In general Level[arr, {-2}] should be a rectangular array, but rows do not need to be the same.



So this:



{{a1, b1}, {{{a2, b2}, {a3, b3}}, {{a4, b4}, {a5, b5}, {a6, b6}}}, {{{{a7,b7}}}} };


should end up:



{ {a1, {{a2, a3}, {a4, a5, a6}}, {{{a7}}} }, ...};









share|improve this question











$endgroup$












  • $begingroup$
    Not a solution, but Flatten[MapIndexed[RotateRight[#2] -> #1 &, arr, {-1}]] gives you a list of rules of what needs to be constructed. I don't know of a way to construct it though: SparseArray does not construct ragged structures.
    $endgroup$
    – Roman
    5 hours ago










  • $begingroup$
    Maybe something along the lines of arr /. {{{a,b}->a},{{a,b}->b}}? Or perhaps more generally, arr /. {{a_?VectorQ :> First@a}, {a_?VectorQ :> Last@a}}?
    $endgroup$
    – Carl Woll
    5 hours ago












  • $begingroup$
    Does your list always contain {a,b} at the lowest level, or can there be anything there as long as they're all of same length?
    $endgroup$
    – Roman
    5 hours ago












  • $begingroup$
    @Roman Level[arr, {-2}]` should be a rectangular array but rows do not need to be the same.
    $endgroup$
    – Kuba
    5 hours ago










  • $begingroup$
    @Kuba maybe you can come up with a recursion that constructs the result from the list of rules I gave 4 lines up? That would be a handy tool to have in any case.
    $endgroup$
    – Roman
    5 hours ago
















6












6








6





$begingroup$


Is there a straightforward way to convert



arr = {
{a, b}, {a, b}, {{{a, b}, {a, b}, {a, b}}, {{a, b}, {a, b}, {a, b}}}
};


to:



{{a, a, {{a, a, a}, {a, a, a}}}, {b, b, {{b, b, b}, {b, b, b}}}}


?



I need to swap the first and last dimension. Which should in principle be possible, because, although arr does not have a fixed structure, the 'bottom' is always uniform:



Level[arr, {-2}]



{{a, b}, {a, b}, {a, b}, {a, b}, {a, b}, {a, b}, {a, b}, {a, b}}



Had Transpose/Flatten/MapThread accepted a negative level specification it would have been easy. That is not the case.



One can think about that question as: How do I create arr2 so that arr[[whatever__, y_]] == arr2[[y, whatever__]]?



EDIT:



In general Level[arr, {-2}] should be a rectangular array, but rows do not need to be the same.



So this:



{{a1, b1}, {{{a2, b2}, {a3, b3}}, {{a4, b4}, {a5, b5}, {a6, b6}}}, {{{{a7,b7}}}} };


should end up:



{ {a1, {{a2, a3}, {a4, a5, a6}}, {{{a7}}} }, ...};









share|improve this question











$endgroup$




Is there a straightforward way to convert



arr = {
{a, b}, {a, b}, {{{a, b}, {a, b}, {a, b}}, {{a, b}, {a, b}, {a, b}}}
};


to:



{{a, a, {{a, a, a}, {a, a, a}}}, {b, b, {{b, b, b}, {b, b, b}}}}


?



I need to swap the first and last dimension. Which should in principle be possible, because, although arr does not have a fixed structure, the 'bottom' is always uniform:



Level[arr, {-2}]



{{a, b}, {a, b}, {a, b}, {a, b}, {a, b}, {a, b}, {a, b}, {a, b}}



Had Transpose/Flatten/MapThread accepted a negative level specification it would have been easy. That is not the case.



One can think about that question as: How do I create arr2 so that arr[[whatever__, y_]] == arr2[[y, whatever__]]?



EDIT:



In general Level[arr, {-2}] should be a rectangular array, but rows do not need to be the same.



So this:



{{a1, b1}, {{{a2, b2}, {a3, b3}}, {{a4, b4}, {a5, b5}, {a6, b6}}}, {{{{a7,b7}}}} };


should end up:



{ {a1, {{a2, a3}, {a4, a5, a6}}, {{{a7}}} }, ...};






list-manipulation






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited 6 mins ago









Peter Mortensen

33627




33627










asked 5 hours ago









KubaKuba

107k12210531




107k12210531












  • $begingroup$
    Not a solution, but Flatten[MapIndexed[RotateRight[#2] -> #1 &, arr, {-1}]] gives you a list of rules of what needs to be constructed. I don't know of a way to construct it though: SparseArray does not construct ragged structures.
    $endgroup$
    – Roman
    5 hours ago










  • $begingroup$
    Maybe something along the lines of arr /. {{{a,b}->a},{{a,b}->b}}? Or perhaps more generally, arr /. {{a_?VectorQ :> First@a}, {a_?VectorQ :> Last@a}}?
    $endgroup$
    – Carl Woll
    5 hours ago












  • $begingroup$
    Does your list always contain {a,b} at the lowest level, or can there be anything there as long as they're all of same length?
    $endgroup$
    – Roman
    5 hours ago












  • $begingroup$
    @Roman Level[arr, {-2}]` should be a rectangular array but rows do not need to be the same.
    $endgroup$
    – Kuba
    5 hours ago










  • $begingroup$
    @Kuba maybe you can come up with a recursion that constructs the result from the list of rules I gave 4 lines up? That would be a handy tool to have in any case.
    $endgroup$
    – Roman
    5 hours ago




















  • $begingroup$
    Not a solution, but Flatten[MapIndexed[RotateRight[#2] -> #1 &, arr, {-1}]] gives you a list of rules of what needs to be constructed. I don't know of a way to construct it though: SparseArray does not construct ragged structures.
    $endgroup$
    – Roman
    5 hours ago










  • $begingroup$
    Maybe something along the lines of arr /. {{{a,b}->a},{{a,b}->b}}? Or perhaps more generally, arr /. {{a_?VectorQ :> First@a}, {a_?VectorQ :> Last@a}}?
    $endgroup$
    – Carl Woll
    5 hours ago












  • $begingroup$
    Does your list always contain {a,b} at the lowest level, or can there be anything there as long as they're all of same length?
    $endgroup$
    – Roman
    5 hours ago












  • $begingroup$
    @Roman Level[arr, {-2}]` should be a rectangular array but rows do not need to be the same.
    $endgroup$
    – Kuba
    5 hours ago










  • $begingroup$
    @Kuba maybe you can come up with a recursion that constructs the result from the list of rules I gave 4 lines up? That would be a handy tool to have in any case.
    $endgroup$
    – Roman
    5 hours ago


















$begingroup$
Not a solution, but Flatten[MapIndexed[RotateRight[#2] -> #1 &, arr, {-1}]] gives you a list of rules of what needs to be constructed. I don't know of a way to construct it though: SparseArray does not construct ragged structures.
$endgroup$
– Roman
5 hours ago




$begingroup$
Not a solution, but Flatten[MapIndexed[RotateRight[#2] -> #1 &, arr, {-1}]] gives you a list of rules of what needs to be constructed. I don't know of a way to construct it though: SparseArray does not construct ragged structures.
$endgroup$
– Roman
5 hours ago












$begingroup$
Maybe something along the lines of arr /. {{{a,b}->a},{{a,b}->b}}? Or perhaps more generally, arr /. {{a_?VectorQ :> First@a}, {a_?VectorQ :> Last@a}}?
$endgroup$
– Carl Woll
5 hours ago






$begingroup$
Maybe something along the lines of arr /. {{{a,b}->a},{{a,b}->b}}? Or perhaps more generally, arr /. {{a_?VectorQ :> First@a}, {a_?VectorQ :> Last@a}}?
$endgroup$
– Carl Woll
5 hours ago














$begingroup$
Does your list always contain {a,b} at the lowest level, or can there be anything there as long as they're all of same length?
$endgroup$
– Roman
5 hours ago






$begingroup$
Does your list always contain {a,b} at the lowest level, or can there be anything there as long as they're all of same length?
$endgroup$
– Roman
5 hours ago














$begingroup$
@Roman Level[arr, {-2}]` should be a rectangular array but rows do not need to be the same.
$endgroup$
– Kuba
5 hours ago




$begingroup$
@Roman Level[arr, {-2}]` should be a rectangular array but rows do not need to be the same.
$endgroup$
– Kuba
5 hours ago












$begingroup$
@Kuba maybe you can come up with a recursion that constructs the result from the list of rules I gave 4 lines up? That would be a handy tool to have in any case.
$endgroup$
– Roman
5 hours ago






$begingroup$
@Kuba maybe you can come up with a recursion that constructs the result from the list of rules I gave 4 lines up? That would be a handy tool to have in any case.
$endgroup$
– Roman
5 hours ago












3 Answers
3






active

oldest

votes


















8












$begingroup$

arr = {{a, b}, {a, b}, {{{a, b}, {a, b}, {a, b}}, {{a, b}, {a, b}, {a, b}}}};

SetAttributes[f1, Listable]
Apply[f1, arr, {0, -3}] /. f1 -> List



{{a, a, {{a, a, a}, {a, a, a}}}, {b, b, {{b, b, b}, {b, b, b}}}}







share|improve this answer









$endgroup$





















    3












    $begingroup$

    This is what the list at the lowest level looks like:



    el = First@Level[list, {-2}];


    Using this, we can solve it with a rules-based approach:



    list /. el -> # & /@ el


    or a recursive approach like this:



    walk[lists : {__List}, i_] := walk[#, i] & /@ lists
    walk[atoms : {__}, i_] := i
    walk[list, #] & /@ el





    share|improve this answer









    $endgroup$





















      1












      $begingroup$

      Terrible solution using Table but works:



      Table[Map[#[[i]] &, arr, {-2}], {i, Last[Dimensions[Level[arr, {-2}]]]}]





      share|improve this answer









      $endgroup$














        Your Answer





        StackExchange.ifUsing("editor", function () {
        return StackExchange.using("mathjaxEditing", function () {
        StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
        StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
        });
        });
        }, "mathjax-editing");

        StackExchange.ready(function() {
        var channelOptions = {
        tags: "".split(" "),
        id: "387"
        };
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function() {
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled) {
        StackExchange.using("snippets", function() {
        createEditor();
        });
        }
        else {
        createEditor();
        }
        });

        function createEditor() {
        StackExchange.prepareEditor({
        heartbeatType: 'answer',
        autoActivateHeartbeat: false,
        convertImagesToLinks: false,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: null,
        bindNavPrevention: true,
        postfix: "",
        imageUploader: {
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        },
        onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        });


        }
        });














        draft saved

        draft discarded


















        StackExchange.ready(
        function () {
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f194206%2fhow-do-i-transpose-the-1st-and-1th-levels-of-an-arbitrarily-nested-array%23new-answer', 'question_page');
        }
        );

        Post as a guest















        Required, but never shown

























        3 Answers
        3






        active

        oldest

        votes








        3 Answers
        3






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes









        8












        $begingroup$

        arr = {{a, b}, {a, b}, {{{a, b}, {a, b}, {a, b}}, {{a, b}, {a, b}, {a, b}}}};

        SetAttributes[f1, Listable]
        Apply[f1, arr, {0, -3}] /. f1 -> List



        {{a, a, {{a, a, a}, {a, a, a}}}, {b, b, {{b, b, b}, {b, b, b}}}}







        share|improve this answer









        $endgroup$


















          8












          $begingroup$

          arr = {{a, b}, {a, b}, {{{a, b}, {a, b}, {a, b}}, {{a, b}, {a, b}, {a, b}}}};

          SetAttributes[f1, Listable]
          Apply[f1, arr, {0, -3}] /. f1 -> List



          {{a, a, {{a, a, a}, {a, a, a}}}, {b, b, {{b, b, b}, {b, b, b}}}}







          share|improve this answer









          $endgroup$
















            8












            8








            8





            $begingroup$

            arr = {{a, b}, {a, b}, {{{a, b}, {a, b}, {a, b}}, {{a, b}, {a, b}, {a, b}}}};

            SetAttributes[f1, Listable]
            Apply[f1, arr, {0, -3}] /. f1 -> List



            {{a, a, {{a, a, a}, {a, a, a}}}, {b, b, {{b, b, b}, {b, b, b}}}}







            share|improve this answer









            $endgroup$



            arr = {{a, b}, {a, b}, {{{a, b}, {a, b}, {a, b}}, {{a, b}, {a, b}, {a, b}}}};

            SetAttributes[f1, Listable]
            Apply[f1, arr, {0, -3}] /. f1 -> List



            {{a, a, {{a, a, a}, {a, a, a}}}, {b, b, {{b, b, b}, {b, b, b}}}}








            share|improve this answer












            share|improve this answer



            share|improve this answer










            answered 5 hours ago









            andre314andre314

            12.3k12352




            12.3k12352























                3












                $begingroup$

                This is what the list at the lowest level looks like:



                el = First@Level[list, {-2}];


                Using this, we can solve it with a rules-based approach:



                list /. el -> # & /@ el


                or a recursive approach like this:



                walk[lists : {__List}, i_] := walk[#, i] & /@ lists
                walk[atoms : {__}, i_] := i
                walk[list, #] & /@ el





                share|improve this answer









                $endgroup$


















                  3












                  $begingroup$

                  This is what the list at the lowest level looks like:



                  el = First@Level[list, {-2}];


                  Using this, we can solve it with a rules-based approach:



                  list /. el -> # & /@ el


                  or a recursive approach like this:



                  walk[lists : {__List}, i_] := walk[#, i] & /@ lists
                  walk[atoms : {__}, i_] := i
                  walk[list, #] & /@ el





                  share|improve this answer









                  $endgroup$
















                    3












                    3








                    3





                    $begingroup$

                    This is what the list at the lowest level looks like:



                    el = First@Level[list, {-2}];


                    Using this, we can solve it with a rules-based approach:



                    list /. el -> # & /@ el


                    or a recursive approach like this:



                    walk[lists : {__List}, i_] := walk[#, i] & /@ lists
                    walk[atoms : {__}, i_] := i
                    walk[list, #] & /@ el





                    share|improve this answer









                    $endgroup$



                    This is what the list at the lowest level looks like:



                    el = First@Level[list, {-2}];


                    Using this, we can solve it with a rules-based approach:



                    list /. el -> # & /@ el


                    or a recursive approach like this:



                    walk[lists : {__List}, i_] := walk[#, i] & /@ lists
                    walk[atoms : {__}, i_] := i
                    walk[list, #] & /@ el






                    share|improve this answer












                    share|improve this answer



                    share|improve this answer










                    answered 5 hours ago









                    C. E.C. E.

                    50.9k399205




                    50.9k399205























                        1












                        $begingroup$

                        Terrible solution using Table but works:



                        Table[Map[#[[i]] &, arr, {-2}], {i, Last[Dimensions[Level[arr, {-2}]]]}]





                        share|improve this answer









                        $endgroup$


















                          1












                          $begingroup$

                          Terrible solution using Table but works:



                          Table[Map[#[[i]] &, arr, {-2}], {i, Last[Dimensions[Level[arr, {-2}]]]}]





                          share|improve this answer









                          $endgroup$
















                            1












                            1








                            1





                            $begingroup$

                            Terrible solution using Table but works:



                            Table[Map[#[[i]] &, arr, {-2}], {i, Last[Dimensions[Level[arr, {-2}]]]}]





                            share|improve this answer









                            $endgroup$



                            Terrible solution using Table but works:



                            Table[Map[#[[i]] &, arr, {-2}], {i, Last[Dimensions[Level[arr, {-2}]]]}]






                            share|improve this answer












                            share|improve this answer



                            share|improve this answer










                            answered 4 hours ago









                            RomanRoman

                            3,9761022




                            3,9761022






























                                draft saved

                                draft discarded




















































                                Thanks for contributing an answer to Mathematica Stack Exchange!


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid



                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.


                                Use MathJax to format equations. MathJax reference.


                                To learn more, see our tips on writing great answers.




                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function () {
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f194206%2fhow-do-i-transpose-the-1st-and-1th-levels-of-an-arbitrarily-nested-array%23new-answer', 'question_page');
                                }
                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Popular posts from this blog

                                What is the “three and three hundred thousand syndrome”?Who wrote the book Arena?What five creatures were...

                                Gersau Kjelder | Navigasjonsmeny46°59′0″N 8°31′0″E46°59′0″N...

                                Hestehale Innhaldsliste Hestehale på kvinner | Hestehale på menn | Galleri | Sjå òg |...