free fall ellipse or parabola? The Next CEO of Stack OverflowCoriolis force in free...
If Nick Fury and Coulson already knew about aliens (Kree and Skrull) why did they wait until Thor's appearance to start making weapons?
What is the difference between "hamstring tendon" and "common hamstring tendon"?
Is dried pee considered dirt?
What steps are necessary to read a Modern SSD in Medieval Europe?
Is it ever safe to open a suspicious HTML file (e.g. email attachment)?
What does "shotgun unity" refer to here in this sentence?
Can I board the first leg of the flight without having final country's visa?
Graph of the history of databases
Strange use of "whether ... than ..." in official text
Does higher Oxidation/ reduction potential translate to higher energy storage in battery?
what's the use of '% to gdp' type of variables?
Physiological effects of huge anime eyes
From jafe to El-Guest
(How) Could a medieval fantasy world survive a magic-induced "nuclear winter"?
Can someone explain this formula for calculating Manhattan distance?
Do I need to write [sic] when including a quotation with a number less than 10 that isn't written out?
Are the names of these months realistic?
What would be the main consequences for a country leaving the WTO?
AB diagonalizable then BA also diagonalizable
Is there an equivalent of cd - for cp or mv
What was Carter Burke's job for "the company" in Aliens?
What difference does it make using sed with/without whitespaces?
TikZ: How to fill area with a special pattern?
How to find image of a complex function with given constraints?
free fall ellipse or parabola?
The Next CEO of Stack OverflowCoriolis force in free fallContainer of liquid in free fallFree fall from spaceMimicking Free FallFree Fall with Air ResistanceFree fall around EarthFree fall of stonesVelocity of a body in free fallFree fall in a centrifugal space ship?The maths of free fall and near free fall
$begingroup$
Herbert Spencer somewhere says that the parabola of a ballistic object is actually a portion of an ellipse that is indistinguishable from a parabola--is that true? It would seem plausible since satellite orbits are ellipses and artillery trajectories are interrupted orbits.
newtonian-mechanics gravity orbital-motion projectile free-fall
$endgroup$
add a comment |
$begingroup$
Herbert Spencer somewhere says that the parabola of a ballistic object is actually a portion of an ellipse that is indistinguishable from a parabola--is that true? It would seem plausible since satellite orbits are ellipses and artillery trajectories are interrupted orbits.
newtonian-mechanics gravity orbital-motion projectile free-fall
$endgroup$
add a comment |
$begingroup$
Herbert Spencer somewhere says that the parabola of a ballistic object is actually a portion of an ellipse that is indistinguishable from a parabola--is that true? It would seem plausible since satellite orbits are ellipses and artillery trajectories are interrupted orbits.
newtonian-mechanics gravity orbital-motion projectile free-fall
$endgroup$
Herbert Spencer somewhere says that the parabola of a ballistic object is actually a portion of an ellipse that is indistinguishable from a parabola--is that true? It would seem plausible since satellite orbits are ellipses and artillery trajectories are interrupted orbits.
newtonian-mechanics gravity orbital-motion projectile free-fall
newtonian-mechanics gravity orbital-motion projectile free-fall
edited 28 mins ago
Aaron Stevens
13.7k42250
13.7k42250
asked 47 mins ago
user56930user56930
174
174
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
The difference between the two cases is the direction of the gravity vector. If gravity is pulling towards a point (as we see in orbital mechanics), ballistic objects follow an elliptical (or sometimes hyperbolic) path. If, however, gravity points in a constant direction (as we often assume in terrestrial physics problems: it pulls "down"), we get a parabolic trajectory.
On the timescales of these trajectories that we call parabolic, the difference in direction of gravity from start to end of the flight is so tremendously minimal, that we can treat it as a perturbation from the "down" vector and then ignore it entirely. This works until the object is flying fast enough that the changing gravity vector starts to have a non-trivial effect.
At orbital velocities, the effect is so non-trivial that we don't even try to model it as a "down" vector plus a perturbation. We just model the vector pointing towards the center of the gravitational body.
$endgroup$
add a comment |
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "151"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f469780%2ffree-fall-ellipse-or-parabola%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The difference between the two cases is the direction of the gravity vector. If gravity is pulling towards a point (as we see in orbital mechanics), ballistic objects follow an elliptical (or sometimes hyperbolic) path. If, however, gravity points in a constant direction (as we often assume in terrestrial physics problems: it pulls "down"), we get a parabolic trajectory.
On the timescales of these trajectories that we call parabolic, the difference in direction of gravity from start to end of the flight is so tremendously minimal, that we can treat it as a perturbation from the "down" vector and then ignore it entirely. This works until the object is flying fast enough that the changing gravity vector starts to have a non-trivial effect.
At orbital velocities, the effect is so non-trivial that we don't even try to model it as a "down" vector plus a perturbation. We just model the vector pointing towards the center of the gravitational body.
$endgroup$
add a comment |
$begingroup$
The difference between the two cases is the direction of the gravity vector. If gravity is pulling towards a point (as we see in orbital mechanics), ballistic objects follow an elliptical (or sometimes hyperbolic) path. If, however, gravity points in a constant direction (as we often assume in terrestrial physics problems: it pulls "down"), we get a parabolic trajectory.
On the timescales of these trajectories that we call parabolic, the difference in direction of gravity from start to end of the flight is so tremendously minimal, that we can treat it as a perturbation from the "down" vector and then ignore it entirely. This works until the object is flying fast enough that the changing gravity vector starts to have a non-trivial effect.
At orbital velocities, the effect is so non-trivial that we don't even try to model it as a "down" vector plus a perturbation. We just model the vector pointing towards the center of the gravitational body.
$endgroup$
add a comment |
$begingroup$
The difference between the two cases is the direction of the gravity vector. If gravity is pulling towards a point (as we see in orbital mechanics), ballistic objects follow an elliptical (or sometimes hyperbolic) path. If, however, gravity points in a constant direction (as we often assume in terrestrial physics problems: it pulls "down"), we get a parabolic trajectory.
On the timescales of these trajectories that we call parabolic, the difference in direction of gravity from start to end of the flight is so tremendously minimal, that we can treat it as a perturbation from the "down" vector and then ignore it entirely. This works until the object is flying fast enough that the changing gravity vector starts to have a non-trivial effect.
At orbital velocities, the effect is so non-trivial that we don't even try to model it as a "down" vector plus a perturbation. We just model the vector pointing towards the center of the gravitational body.
$endgroup$
The difference between the two cases is the direction of the gravity vector. If gravity is pulling towards a point (as we see in orbital mechanics), ballistic objects follow an elliptical (or sometimes hyperbolic) path. If, however, gravity points in a constant direction (as we often assume in terrestrial physics problems: it pulls "down"), we get a parabolic trajectory.
On the timescales of these trajectories that we call parabolic, the difference in direction of gravity from start to end of the flight is so tremendously minimal, that we can treat it as a perturbation from the "down" vector and then ignore it entirely. This works until the object is flying fast enough that the changing gravity vector starts to have a non-trivial effect.
At orbital velocities, the effect is so non-trivial that we don't even try to model it as a "down" vector plus a perturbation. We just model the vector pointing towards the center of the gravitational body.
answered 40 mins ago
Cort AmmonCort Ammon
24k34779
24k34779
add a comment |
add a comment |
Thanks for contributing an answer to Physics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f469780%2ffree-fall-ellipse-or-parabola%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown