what is the log of the PDF for a Normal Distribution? Announcing the arrival of Valued...

Does the Black Tentacles spell do damage twice at the start of turn to an already restrained creature?

Flight departed from the gate 5 min before scheduled departure time. Refund options

What is the difference between CTSS and ITS?

My mentor says to set image to Fine instead of RAW — how is this different from JPG?

New Order #6: Easter Egg

Monty Hall Problem-Probability Paradox

Can an iPhone 7 be made to function as a NFC Tag?

Mounting TV on a weird wall that has some material between the drywall and stud

Random body shuffle every night—can we still function?

Simple Http Server

What does Turing mean by this statement?

How to change the tick of the color bar legend to black

two integers one line calculator

How can a team of shapeshifters communicate?

What initially awakened the Balrog?

The Nth Gryphon Number

Positioning dot before text in math mode

Nose gear failure in single prop aircraft: belly landing or nose-gear up landing?

Tannaka duality for semisimple groups

Why is it faster to reheat something than it is to cook it?

"klopfte jemand" or "jemand klopfte"?

Was Kant an Intuitionist about mathematical objects?

The test team as an enemy of development? And how can this be avoided?

License to disallow distribution in closed source software, but allow exceptions made by owner?



what is the log of the PDF for a Normal Distribution?



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)How to solve/compute for normal distribution and log-normal CDF inverse?Distribution of the convolution of squared normal and chi-squared variables?Cramer's theorem for a precise normal asymptotic distributionConditional Expected Value of Product of Normal and Log-Normal DistributionAsymptotic relation for a class of probability distribution functionsShow that $Y_1+Y_2$ have distribution skew-normalExpected Fisher's information matrix for Student's t-distribution?Expected Value of Maximum likelihood mean for Gaussian DistributionJoint density of the sum of a random and a non-random variable?Reversing conditional distribution





.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty{ margin-bottom:0;
}







1












$begingroup$


I am learning Maximum Likelihood Estimation.



per this post, the log of the PDF for a Normal Distribution looks like this.



enter image description here



let's call this equation1.



according to any probability theory textbook the formula of the PDF for a Normal Distribution:



$$
frac {1}{sigma sqrt {2pi}}
e^{-frac {(x - mu)^2}{2sigma ^2}}
,-infty <x<infty
$$



taking log produces:



begin{align}
ln(frac {1}{sigma sqrt {2pi}}
e^{-frac {(x - mu)^2}{2sigma ^2}}) &=
ln(frac {1}{sigma sqrt {2pi}})+ln(e^{-frac {(x - mu)^2}{2sigma ^2}})\
&=-ln(sigma)-frac{1}{2} ln(2pi) - frac {(x - mu)^2}{2sigma ^2}
end{align}



which is very different from equation1.



is equation1 right? what am I missing?










share|cite|improve this question









$endgroup$








  • 3




    $begingroup$
    Your first equation is the joint log-pdf of a sample of n iid normal random variables (AKA the log-likelihood of that sample). The second equation is the the log-pdf of a single normal random variable
    $endgroup$
    – Artem Mavrin
    1 hour ago












  • $begingroup$
    @ArtemMavrin, I think your comment would be a perfectly good answer if you expanded on just a bit to make it slightly more clear.
    $endgroup$
    – StatsStudent
    1 hour ago


















1












$begingroup$


I am learning Maximum Likelihood Estimation.



per this post, the log of the PDF for a Normal Distribution looks like this.



enter image description here



let's call this equation1.



according to any probability theory textbook the formula of the PDF for a Normal Distribution:



$$
frac {1}{sigma sqrt {2pi}}
e^{-frac {(x - mu)^2}{2sigma ^2}}
,-infty <x<infty
$$



taking log produces:



begin{align}
ln(frac {1}{sigma sqrt {2pi}}
e^{-frac {(x - mu)^2}{2sigma ^2}}) &=
ln(frac {1}{sigma sqrt {2pi}})+ln(e^{-frac {(x - mu)^2}{2sigma ^2}})\
&=-ln(sigma)-frac{1}{2} ln(2pi) - frac {(x - mu)^2}{2sigma ^2}
end{align}



which is very different from equation1.



is equation1 right? what am I missing?










share|cite|improve this question









$endgroup$








  • 3




    $begingroup$
    Your first equation is the joint log-pdf of a sample of n iid normal random variables (AKA the log-likelihood of that sample). The second equation is the the log-pdf of a single normal random variable
    $endgroup$
    – Artem Mavrin
    1 hour ago












  • $begingroup$
    @ArtemMavrin, I think your comment would be a perfectly good answer if you expanded on just a bit to make it slightly more clear.
    $endgroup$
    – StatsStudent
    1 hour ago














1












1








1





$begingroup$


I am learning Maximum Likelihood Estimation.



per this post, the log of the PDF for a Normal Distribution looks like this.



enter image description here



let's call this equation1.



according to any probability theory textbook the formula of the PDF for a Normal Distribution:



$$
frac {1}{sigma sqrt {2pi}}
e^{-frac {(x - mu)^2}{2sigma ^2}}
,-infty <x<infty
$$



taking log produces:



begin{align}
ln(frac {1}{sigma sqrt {2pi}}
e^{-frac {(x - mu)^2}{2sigma ^2}}) &=
ln(frac {1}{sigma sqrt {2pi}})+ln(e^{-frac {(x - mu)^2}{2sigma ^2}})\
&=-ln(sigma)-frac{1}{2} ln(2pi) - frac {(x - mu)^2}{2sigma ^2}
end{align}



which is very different from equation1.



is equation1 right? what am I missing?










share|cite|improve this question









$endgroup$




I am learning Maximum Likelihood Estimation.



per this post, the log of the PDF for a Normal Distribution looks like this.



enter image description here



let's call this equation1.



according to any probability theory textbook the formula of the PDF for a Normal Distribution:



$$
frac {1}{sigma sqrt {2pi}}
e^{-frac {(x - mu)^2}{2sigma ^2}}
,-infty <x<infty
$$



taking log produces:



begin{align}
ln(frac {1}{sigma sqrt {2pi}}
e^{-frac {(x - mu)^2}{2sigma ^2}}) &=
ln(frac {1}{sigma sqrt {2pi}})+ln(e^{-frac {(x - mu)^2}{2sigma ^2}})\
&=-ln(sigma)-frac{1}{2} ln(2pi) - frac {(x - mu)^2}{2sigma ^2}
end{align}



which is very different from equation1.



is equation1 right? what am I missing?







probability log






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked 1 hour ago









shi95shi95

83




83








  • 3




    $begingroup$
    Your first equation is the joint log-pdf of a sample of n iid normal random variables (AKA the log-likelihood of that sample). The second equation is the the log-pdf of a single normal random variable
    $endgroup$
    – Artem Mavrin
    1 hour ago












  • $begingroup$
    @ArtemMavrin, I think your comment would be a perfectly good answer if you expanded on just a bit to make it slightly more clear.
    $endgroup$
    – StatsStudent
    1 hour ago














  • 3




    $begingroup$
    Your first equation is the joint log-pdf of a sample of n iid normal random variables (AKA the log-likelihood of that sample). The second equation is the the log-pdf of a single normal random variable
    $endgroup$
    – Artem Mavrin
    1 hour ago












  • $begingroup$
    @ArtemMavrin, I think your comment would be a perfectly good answer if you expanded on just a bit to make it slightly more clear.
    $endgroup$
    – StatsStudent
    1 hour ago








3




3




$begingroup$
Your first equation is the joint log-pdf of a sample of n iid normal random variables (AKA the log-likelihood of that sample). The second equation is the the log-pdf of a single normal random variable
$endgroup$
– Artem Mavrin
1 hour ago






$begingroup$
Your first equation is the joint log-pdf of a sample of n iid normal random variables (AKA the log-likelihood of that sample). The second equation is the the log-pdf of a single normal random variable
$endgroup$
– Artem Mavrin
1 hour ago














$begingroup$
@ArtemMavrin, I think your comment would be a perfectly good answer if you expanded on just a bit to make it slightly more clear.
$endgroup$
– StatsStudent
1 hour ago




$begingroup$
@ArtemMavrin, I think your comment would be a perfectly good answer if you expanded on just a bit to make it slightly more clear.
$endgroup$
– StatsStudent
1 hour ago










1 Answer
1






active

oldest

votes


















2












$begingroup$

For a single observed value $x$ you have log-likelihood:



$$ell_x(mu,sigma^2) = - ln sigma - frac{1}{2} ln (2 pi) - frac{1}{2} Big( frac{x-mu}{sigma} Big)^2.$$



For a sample of observed values $mathbf{x} = (x_1,...,x_n)$ you then have:



$$ell_mathbf{x}(mu,sigma^2) = sum_{i=1}^n ell_x(mu,sigma^2) = - n ln sigma - frac{n}{2} ln (2 pi) - frac{1}{2 sigma^2} sum_{i=1}^n (x_i-mu)^2.$$






share|cite|improve this answer









$endgroup$














    Your Answer








    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "65"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: false,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: null,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstats.stackexchange.com%2fquestions%2f404191%2fwhat-is-the-log-of-the-pdf-for-a-normal-distribution%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    2












    $begingroup$

    For a single observed value $x$ you have log-likelihood:



    $$ell_x(mu,sigma^2) = - ln sigma - frac{1}{2} ln (2 pi) - frac{1}{2} Big( frac{x-mu}{sigma} Big)^2.$$



    For a sample of observed values $mathbf{x} = (x_1,...,x_n)$ you then have:



    $$ell_mathbf{x}(mu,sigma^2) = sum_{i=1}^n ell_x(mu,sigma^2) = - n ln sigma - frac{n}{2} ln (2 pi) - frac{1}{2 sigma^2} sum_{i=1}^n (x_i-mu)^2.$$






    share|cite|improve this answer









    $endgroup$


















      2












      $begingroup$

      For a single observed value $x$ you have log-likelihood:



      $$ell_x(mu,sigma^2) = - ln sigma - frac{1}{2} ln (2 pi) - frac{1}{2} Big( frac{x-mu}{sigma} Big)^2.$$



      For a sample of observed values $mathbf{x} = (x_1,...,x_n)$ you then have:



      $$ell_mathbf{x}(mu,sigma^2) = sum_{i=1}^n ell_x(mu,sigma^2) = - n ln sigma - frac{n}{2} ln (2 pi) - frac{1}{2 sigma^2} sum_{i=1}^n (x_i-mu)^2.$$






      share|cite|improve this answer









      $endgroup$
















        2












        2








        2





        $begingroup$

        For a single observed value $x$ you have log-likelihood:



        $$ell_x(mu,sigma^2) = - ln sigma - frac{1}{2} ln (2 pi) - frac{1}{2} Big( frac{x-mu}{sigma} Big)^2.$$



        For a sample of observed values $mathbf{x} = (x_1,...,x_n)$ you then have:



        $$ell_mathbf{x}(mu,sigma^2) = sum_{i=1}^n ell_x(mu,sigma^2) = - n ln sigma - frac{n}{2} ln (2 pi) - frac{1}{2 sigma^2} sum_{i=1}^n (x_i-mu)^2.$$






        share|cite|improve this answer









        $endgroup$



        For a single observed value $x$ you have log-likelihood:



        $$ell_x(mu,sigma^2) = - ln sigma - frac{1}{2} ln (2 pi) - frac{1}{2} Big( frac{x-mu}{sigma} Big)^2.$$



        For a sample of observed values $mathbf{x} = (x_1,...,x_n)$ you then have:



        $$ell_mathbf{x}(mu,sigma^2) = sum_{i=1}^n ell_x(mu,sigma^2) = - n ln sigma - frac{n}{2} ln (2 pi) - frac{1}{2 sigma^2} sum_{i=1}^n (x_i-mu)^2.$$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered 56 mins ago









        BenBen

        28.9k233129




        28.9k233129






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Cross Validated!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstats.stackexchange.com%2fquestions%2f404191%2fwhat-is-the-log-of-the-pdf-for-a-normal-distribution%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Gersau Kjelder | Navigasjonsmeny46°59′0″N 8°31′0″E46°59′0″N...

            Hestehale Innhaldsliste Hestehale på kvinner | Hestehale på menn | Galleri | Sjå òg |...

            What is the “three and three hundred thousand syndrome”?Who wrote the book Arena?What five creatures were...