Finding $cos(theta)+cos(theta+alpha)+cos(theta+2alpha)+…+cos(theta+nalpha)$ with complex variable analysis ...

Rationale for describing kurtosis as "peakedness"?

Random body shuffle every night—can we still function?

What does Turing mean by this statement?

Tips to organize LaTeX presentations for a semester

Sally's older brother

Did pre-Columbian Americans know the spherical shape of the Earth?

White walkers, cemeteries and wights

Should a wizard buy fine inks every time he want to copy spells into his spellbook?

Tannaka duality for semisimple groups

Putting class ranking in CV, but against dept guidelines

Simple Http Server

In musical terms, what properties are varied by the human voice to produce different words / syllables?

Why is a lens darker than other ones when applying the same settings?

Can an iPhone 7 be made to function as a NFC Tag?

Can you force honesty by using the Speak with Dead and Zone of Truth spells together?

How do living politicians protect their readily obtainable signatures from misuse?

How much damage would a cupful of neutron star matter do to the Earth?

AppleTVs create a chatty alternate WiFi network

Does the Black Tentacles spell do damage twice at the start of turn to an already restrained creature?

If Windows 7 doesn't support WSL, then what is "Subsystem for UNIX-based Applications"?

Is there public access to the Meteor Crater in Arizona?

Why weren't discrete x86 CPUs ever used in game hardware?

Asymptotics question

How does light 'choose' between wave and particle behaviour?



Finding $cos(theta)+cos(theta+alpha)+cos(theta+2alpha)+…+cos(theta+nalpha)$ with complex variable analysis



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)Finding the integral $int_0^pidfrac{dtheta}{(2+costheta)^2}$ by complex analysisCalculating the following integral using complex analysis: $int_{0}^{pi}e^{acos(theta)}cos(asin(theta)), dtheta$complex analysis - differentiabiliityHow to use complex analysis to find the integral $int^pi_{−pi} frac 1 {1+sin^2(theta)} dtheta$?Trigonometric Expression for $1 + cos alpha + cos 2alpha + cdots + cos n alpha$ using complex numbersComplex Analysis: why does $cos(3theta)$ = $cos^3theta - 3costheta sin^2theta$.$int^{pi/2}_{0}frac{theta cos(theta)}{1+sin^{2}(theta)}$ through complex analysisUse the Maclaurin series to prove that $e^{itheta} = cos(theta) + isin(theta)$Show (via Complex Numbers): $frac{cosalphacosbeta}{cos^2theta}+frac{sinalphasinbeta}{sin^2theta}+1=0$ under given conditionsProving complex series $1 + costheta + cos2theta +… + cos ntheta $












2












$begingroup$


We have a series as



$cos(theta)+cos(theta+alpha)+cos(theta+2alpha)+...+cos(theta+nalpha)=U$



How can we make use of complex variable analysis to arrive at the term below which is equivalent to the above series?



$U=frac{sin(frac{n+1}{2}alpha)}{sin(frac{1}{2}alpha)}cos(theta+frac{1}{2}nalpha)$










share|cite|improve this question











$endgroup$

















    2












    $begingroup$


    We have a series as



    $cos(theta)+cos(theta+alpha)+cos(theta+2alpha)+...+cos(theta+nalpha)=U$



    How can we make use of complex variable analysis to arrive at the term below which is equivalent to the above series?



    $U=frac{sin(frac{n+1}{2}alpha)}{sin(frac{1}{2}alpha)}cos(theta+frac{1}{2}nalpha)$










    share|cite|improve this question











    $endgroup$















      2












      2








      2





      $begingroup$


      We have a series as



      $cos(theta)+cos(theta+alpha)+cos(theta+2alpha)+...+cos(theta+nalpha)=U$



      How can we make use of complex variable analysis to arrive at the term below which is equivalent to the above series?



      $U=frac{sin(frac{n+1}{2}alpha)}{sin(frac{1}{2}alpha)}cos(theta+frac{1}{2}nalpha)$










      share|cite|improve this question











      $endgroup$




      We have a series as



      $cos(theta)+cos(theta+alpha)+cos(theta+2alpha)+...+cos(theta+nalpha)=U$



      How can we make use of complex variable analysis to arrive at the term below which is equivalent to the above series?



      $U=frac{sin(frac{n+1}{2}alpha)}{sin(frac{1}{2}alpha)}cos(theta+frac{1}{2}nalpha)$







      sequences-and-series complex-analysis complex-numbers






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited 5 mins ago









      YuiTo Cheng

      2,58641037




      2,58641037










      asked 1 hour ago









      UnbelievableUnbelievable

      1163




      1163






















          1 Answer
          1






          active

          oldest

          votes


















          5












          $begingroup$

          Use the fact that this is almost a geometric series. $$begin{align}U&=mathfrak R[e^{itheta} +e^{itheta+ialpha}+cdots+e^{itheta+inalpha}]\&=mathfrak Rleft[e^{itheta}sum_{j=0}^n e^{ijalpha}right]\&=mathfrak Rleft[e^{itheta}frac{1-e^{i(n+1)alpha}}{1-e^{ialpha}}right]\&=mathfrak Rleft[e^{itheta}frac{e^{-i(n+1)alpha/2}-e^{i(n+1)alpha/2}}{e^{-ialpha/2}-e^{ialpha/2}}e^{inalpha/2}right]\&=mathfrak Rleft[e^{i(nalpha/2+theta)}frac{sin[(n+1)alpha/2]}{sin[alpha/2]}right]\&=cos(theta+tfrac{nalpha}{2})frac{sinleft(frac12(n+1)alpharight)}{sinleft(frac12alpharight)}end{align}$$






          share|cite|improve this answer









          $endgroup$














            Your Answer








            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3195401%2ffinding-cos-theta-cos-theta-alpha-cos-theta2-alpha-cos-thetan%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            5












            $begingroup$

            Use the fact that this is almost a geometric series. $$begin{align}U&=mathfrak R[e^{itheta} +e^{itheta+ialpha}+cdots+e^{itheta+inalpha}]\&=mathfrak Rleft[e^{itheta}sum_{j=0}^n e^{ijalpha}right]\&=mathfrak Rleft[e^{itheta}frac{1-e^{i(n+1)alpha}}{1-e^{ialpha}}right]\&=mathfrak Rleft[e^{itheta}frac{e^{-i(n+1)alpha/2}-e^{i(n+1)alpha/2}}{e^{-ialpha/2}-e^{ialpha/2}}e^{inalpha/2}right]\&=mathfrak Rleft[e^{i(nalpha/2+theta)}frac{sin[(n+1)alpha/2]}{sin[alpha/2]}right]\&=cos(theta+tfrac{nalpha}{2})frac{sinleft(frac12(n+1)alpharight)}{sinleft(frac12alpharight)}end{align}$$






            share|cite|improve this answer









            $endgroup$


















              5












              $begingroup$

              Use the fact that this is almost a geometric series. $$begin{align}U&=mathfrak R[e^{itheta} +e^{itheta+ialpha}+cdots+e^{itheta+inalpha}]\&=mathfrak Rleft[e^{itheta}sum_{j=0}^n e^{ijalpha}right]\&=mathfrak Rleft[e^{itheta}frac{1-e^{i(n+1)alpha}}{1-e^{ialpha}}right]\&=mathfrak Rleft[e^{itheta}frac{e^{-i(n+1)alpha/2}-e^{i(n+1)alpha/2}}{e^{-ialpha/2}-e^{ialpha/2}}e^{inalpha/2}right]\&=mathfrak Rleft[e^{i(nalpha/2+theta)}frac{sin[(n+1)alpha/2]}{sin[alpha/2]}right]\&=cos(theta+tfrac{nalpha}{2})frac{sinleft(frac12(n+1)alpharight)}{sinleft(frac12alpharight)}end{align}$$






              share|cite|improve this answer









              $endgroup$
















                5












                5








                5





                $begingroup$

                Use the fact that this is almost a geometric series. $$begin{align}U&=mathfrak R[e^{itheta} +e^{itheta+ialpha}+cdots+e^{itheta+inalpha}]\&=mathfrak Rleft[e^{itheta}sum_{j=0}^n e^{ijalpha}right]\&=mathfrak Rleft[e^{itheta}frac{1-e^{i(n+1)alpha}}{1-e^{ialpha}}right]\&=mathfrak Rleft[e^{itheta}frac{e^{-i(n+1)alpha/2}-e^{i(n+1)alpha/2}}{e^{-ialpha/2}-e^{ialpha/2}}e^{inalpha/2}right]\&=mathfrak Rleft[e^{i(nalpha/2+theta)}frac{sin[(n+1)alpha/2]}{sin[alpha/2]}right]\&=cos(theta+tfrac{nalpha}{2})frac{sinleft(frac12(n+1)alpharight)}{sinleft(frac12alpharight)}end{align}$$






                share|cite|improve this answer









                $endgroup$



                Use the fact that this is almost a geometric series. $$begin{align}U&=mathfrak R[e^{itheta} +e^{itheta+ialpha}+cdots+e^{itheta+inalpha}]\&=mathfrak Rleft[e^{itheta}sum_{j=0}^n e^{ijalpha}right]\&=mathfrak Rleft[e^{itheta}frac{1-e^{i(n+1)alpha}}{1-e^{ialpha}}right]\&=mathfrak Rleft[e^{itheta}frac{e^{-i(n+1)alpha/2}-e^{i(n+1)alpha/2}}{e^{-ialpha/2}-e^{ialpha/2}}e^{inalpha/2}right]\&=mathfrak Rleft[e^{i(nalpha/2+theta)}frac{sin[(n+1)alpha/2]}{sin[alpha/2]}right]\&=cos(theta+tfrac{nalpha}{2})frac{sinleft(frac12(n+1)alpharight)}{sinleft(frac12alpharight)}end{align}$$







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered 49 mins ago









                dialogdialog

                1197




                1197






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3195401%2ffinding-cos-theta-cos-theta-alpha-cos-theta2-alpha-cos-thetan%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Gersau Kjelder | Navigasjonsmeny46°59′0″N 8°31′0″E46°59′0″N...

                    Hestehale Innhaldsliste Hestehale på kvinner | Hestehale på menn | Galleri | Sjå òg |...

                    What is the “three and three hundred thousand syndrome”?Who wrote the book Arena?What five creatures were...