Problem of parity - Can we draw a closed path made up of 20 line segments…What am I getting for Christmas?...

How does one intimidate enemies without having the capacity for violence?

Why not use SQL instead of GraphQL?

Is it legal for company to use my work email to pretend I still work there?

Minkowski space

How is the claim "I am in New York only if I am in America" the same as "If I am in New York, then I am in America?

Why can't I see bouncing of a switch on an oscilloscope?

"You are your self first supporter", a more proper way to say it

How to write a macro that is braces sensitive?

Is it possible to do 50 km distance without any previous training?

How to find program name(s) of an installed package?

A newer friend of my brother's gave him a load of baseball cards that are supposedly extremely valuable. Is this a scam?

What is the offset in a seaplane's hull?

Can I ask the recruiters in my resume to put the reason why I am rejected?

Finding angle with pure Geometry.

I’m planning on buying a laser printer but concerned about the life cycle of toner in the machine

Why did the Germans forbid the possession of pet pigeons in Rostov-on-Don in 1941?

Approximately how much travel time was saved by the opening of the Suez Canal in 1869?

What typically incentivizes a professor to change jobs to a lower ranking university?

How did the USSR manage to innovate in an environment characterized by government censorship and high bureaucracy?

Accidentally leaked the solution to an assignment, what to do now? (I'm the prof)

Is it unprofessional to ask if a job posting on GlassDoor is real?

Is this a crack on the carbon frame?

What defenses are there against being summoned by the Gate spell?

Modeling an IPv4 Address



Problem of parity - Can we draw a closed path made up of 20 line segments…


What am I getting for Christmas? Secret Santa and Graph theoryReturn of the lost ant 3DVariation of the opaque forest problem (a.k.a farmyard problem)A closed path is made up of 11 line segments. Can one line, not containing a vertex of the path, intersect each of its segments?Connecting $1997$ points in the plane- what am I missing?How many paths are there from point P to point Q if each step has to go closer to point Q.A problem involving divisibility , parity and extremely clever thinkingHow to go out from a circular forest if we are lost? Not the straight line?Does finding the line of tightest packing in a packing problem help?Cover the plane with closed disks













3












$begingroup$


Can we draw a closed path made up of 20 line segments, each of which intersects exactly one of the other segments?










share|cite|improve this question







New contributor




Luiz Farias is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$

















    3












    $begingroup$


    Can we draw a closed path made up of 20 line segments, each of which intersects exactly one of the other segments?










    share|cite|improve this question







    New contributor




    Luiz Farias is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.







    $endgroup$















      3












      3








      3





      $begingroup$


      Can we draw a closed path made up of 20 line segments, each of which intersects exactly one of the other segments?










      share|cite|improve this question







      New contributor




      Luiz Farias is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.







      $endgroup$




      Can we draw a closed path made up of 20 line segments, each of which intersects exactly one of the other segments?







      recreational-mathematics parity






      share|cite|improve this question







      New contributor




      Luiz Farias is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.











      share|cite|improve this question







      New contributor




      Luiz Farias is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      share|cite|improve this question




      share|cite|improve this question






      New contributor




      Luiz Farias is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      asked 1 hour ago









      Luiz FariasLuiz Farias

      161




      161




      New contributor




      Luiz Farias is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.





      New contributor





      Luiz Farias is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






      Luiz Farias is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






















          3 Answers
          3






          active

          oldest

          votes


















          3












          $begingroup$

          David G. Stork's example with $18$ points and edges can easily be changed into an example with $10$ points and edges based on a pentagon inside another pentagon with alternating links. So take two of those $10$ solutions, one inside the other, and then join them appropriately to get something like this with $20$ points and edges.



          enter image description here






          share|cite|improve this answer











          $endgroup$









          • 1




            $begingroup$
            Interesting that it has to "reverse direction"; I wonder if there's a winding-number argument to show something like this must be true...but I'm too groggy to work one out.
            $endgroup$
            – John Hughes
            42 mins ago






          • 1




            $begingroup$
            Bravo! (+1).... the key seems to be reversing chirality.
            $endgroup$
            – David G. Stork
            31 mins ago












          • $begingroup$
            It would be similarly possible to combine $6$ and $14$ solutions, and to have the sub-solutions next to each other rather than one inside the other
            $endgroup$
            – Henry
            9 mins ago










          • $begingroup$
            @Henry: Can you write code (Mathematica?) to generate a solution given $n = 2k$? That would be incredible. (I wrote code for my $n = 18$ "solution.")
            $endgroup$
            – David G. Stork
            4 mins ago





















          1












          $begingroup$

          (I assume there can be no crossings at vertices or corners.)



          Here is one solution for $18$ (and @Henry, below, generalizes to $20$):



          enter image description here



          Since each segment is crossed by exactly one other segment, we can think of the problem as having 10 Xs that have to be linked without crossing.






          share|cite|improve this answer











          $endgroup$









          • 1




            $begingroup$
            Indeed - you seem to use $9$ being odd, though $10$ is not
            $endgroup$
            – Henry
            1 hour ago



















          0












          $begingroup$

          You can certainly do it if your drawing is on a torus: draw a decagon that goes "through the hole"; then draw a zigzag (like the one in your picture) that crosses each edge of the decagon once. The two ends of the zigzag will end up on opposite "sides" of the original decagon, but can be joined "around the back". By converting the situation to one involving a "square donut" (akin to this one) you can probably do this all with straight lines, although that may be easier if the cross-section is a pentagon rather than a square...






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            I wonder if your "square donut" will force kinks in lines, thereby breaking the conditions of the problem. Possible... but not certain...
            $endgroup$
            – David G. Stork
            24 mins ago










          • $begingroup$
            You may well be right. Could be that there's a Z/2Z obstruction hiding in here somewhere.
            $endgroup$
            – John Hughes
            16 mins ago












          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });






          Luiz Farias is a new contributor. Be nice, and check out our Code of Conduct.










          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3177522%2fproblem-of-parity-can-we-draw-a-closed-path-made-up-of-20-line-segments%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          3 Answers
          3






          active

          oldest

          votes








          3 Answers
          3






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          3












          $begingroup$

          David G. Stork's example with $18$ points and edges can easily be changed into an example with $10$ points and edges based on a pentagon inside another pentagon with alternating links. So take two of those $10$ solutions, one inside the other, and then join them appropriately to get something like this with $20$ points and edges.



          enter image description here






          share|cite|improve this answer











          $endgroup$









          • 1




            $begingroup$
            Interesting that it has to "reverse direction"; I wonder if there's a winding-number argument to show something like this must be true...but I'm too groggy to work one out.
            $endgroup$
            – John Hughes
            42 mins ago






          • 1




            $begingroup$
            Bravo! (+1).... the key seems to be reversing chirality.
            $endgroup$
            – David G. Stork
            31 mins ago












          • $begingroup$
            It would be similarly possible to combine $6$ and $14$ solutions, and to have the sub-solutions next to each other rather than one inside the other
            $endgroup$
            – Henry
            9 mins ago










          • $begingroup$
            @Henry: Can you write code (Mathematica?) to generate a solution given $n = 2k$? That would be incredible. (I wrote code for my $n = 18$ "solution.")
            $endgroup$
            – David G. Stork
            4 mins ago


















          3












          $begingroup$

          David G. Stork's example with $18$ points and edges can easily be changed into an example with $10$ points and edges based on a pentagon inside another pentagon with alternating links. So take two of those $10$ solutions, one inside the other, and then join them appropriately to get something like this with $20$ points and edges.



          enter image description here






          share|cite|improve this answer











          $endgroup$









          • 1




            $begingroup$
            Interesting that it has to "reverse direction"; I wonder if there's a winding-number argument to show something like this must be true...but I'm too groggy to work one out.
            $endgroup$
            – John Hughes
            42 mins ago






          • 1




            $begingroup$
            Bravo! (+1).... the key seems to be reversing chirality.
            $endgroup$
            – David G. Stork
            31 mins ago












          • $begingroup$
            It would be similarly possible to combine $6$ and $14$ solutions, and to have the sub-solutions next to each other rather than one inside the other
            $endgroup$
            – Henry
            9 mins ago










          • $begingroup$
            @Henry: Can you write code (Mathematica?) to generate a solution given $n = 2k$? That would be incredible. (I wrote code for my $n = 18$ "solution.")
            $endgroup$
            – David G. Stork
            4 mins ago
















          3












          3








          3





          $begingroup$

          David G. Stork's example with $18$ points and edges can easily be changed into an example with $10$ points and edges based on a pentagon inside another pentagon with alternating links. So take two of those $10$ solutions, one inside the other, and then join them appropriately to get something like this with $20$ points and edges.



          enter image description here






          share|cite|improve this answer











          $endgroup$



          David G. Stork's example with $18$ points and edges can easily be changed into an example with $10$ points and edges based on a pentagon inside another pentagon with alternating links. So take two of those $10$ solutions, one inside the other, and then join them appropriately to get something like this with $20$ points and edges.



          enter image description here







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited 43 mins ago

























          answered 49 mins ago









          HenryHenry

          101k482170




          101k482170








          • 1




            $begingroup$
            Interesting that it has to "reverse direction"; I wonder if there's a winding-number argument to show something like this must be true...but I'm too groggy to work one out.
            $endgroup$
            – John Hughes
            42 mins ago






          • 1




            $begingroup$
            Bravo! (+1).... the key seems to be reversing chirality.
            $endgroup$
            – David G. Stork
            31 mins ago












          • $begingroup$
            It would be similarly possible to combine $6$ and $14$ solutions, and to have the sub-solutions next to each other rather than one inside the other
            $endgroup$
            – Henry
            9 mins ago










          • $begingroup$
            @Henry: Can you write code (Mathematica?) to generate a solution given $n = 2k$? That would be incredible. (I wrote code for my $n = 18$ "solution.")
            $endgroup$
            – David G. Stork
            4 mins ago
















          • 1




            $begingroup$
            Interesting that it has to "reverse direction"; I wonder if there's a winding-number argument to show something like this must be true...but I'm too groggy to work one out.
            $endgroup$
            – John Hughes
            42 mins ago






          • 1




            $begingroup$
            Bravo! (+1).... the key seems to be reversing chirality.
            $endgroup$
            – David G. Stork
            31 mins ago












          • $begingroup$
            It would be similarly possible to combine $6$ and $14$ solutions, and to have the sub-solutions next to each other rather than one inside the other
            $endgroup$
            – Henry
            9 mins ago










          • $begingroup$
            @Henry: Can you write code (Mathematica?) to generate a solution given $n = 2k$? That would be incredible. (I wrote code for my $n = 18$ "solution.")
            $endgroup$
            – David G. Stork
            4 mins ago










          1




          1




          $begingroup$
          Interesting that it has to "reverse direction"; I wonder if there's a winding-number argument to show something like this must be true...but I'm too groggy to work one out.
          $endgroup$
          – John Hughes
          42 mins ago




          $begingroup$
          Interesting that it has to "reverse direction"; I wonder if there's a winding-number argument to show something like this must be true...but I'm too groggy to work one out.
          $endgroup$
          – John Hughes
          42 mins ago




          1




          1




          $begingroup$
          Bravo! (+1).... the key seems to be reversing chirality.
          $endgroup$
          – David G. Stork
          31 mins ago






          $begingroup$
          Bravo! (+1).... the key seems to be reversing chirality.
          $endgroup$
          – David G. Stork
          31 mins ago














          $begingroup$
          It would be similarly possible to combine $6$ and $14$ solutions, and to have the sub-solutions next to each other rather than one inside the other
          $endgroup$
          – Henry
          9 mins ago




          $begingroup$
          It would be similarly possible to combine $6$ and $14$ solutions, and to have the sub-solutions next to each other rather than one inside the other
          $endgroup$
          – Henry
          9 mins ago












          $begingroup$
          @Henry: Can you write code (Mathematica?) to generate a solution given $n = 2k$? That would be incredible. (I wrote code for my $n = 18$ "solution.")
          $endgroup$
          – David G. Stork
          4 mins ago






          $begingroup$
          @Henry: Can you write code (Mathematica?) to generate a solution given $n = 2k$? That would be incredible. (I wrote code for my $n = 18$ "solution.")
          $endgroup$
          – David G. Stork
          4 mins ago













          1












          $begingroup$

          (I assume there can be no crossings at vertices or corners.)



          Here is one solution for $18$ (and @Henry, below, generalizes to $20$):



          enter image description here



          Since each segment is crossed by exactly one other segment, we can think of the problem as having 10 Xs that have to be linked without crossing.






          share|cite|improve this answer











          $endgroup$









          • 1




            $begingroup$
            Indeed - you seem to use $9$ being odd, though $10$ is not
            $endgroup$
            – Henry
            1 hour ago
















          1












          $begingroup$

          (I assume there can be no crossings at vertices or corners.)



          Here is one solution for $18$ (and @Henry, below, generalizes to $20$):



          enter image description here



          Since each segment is crossed by exactly one other segment, we can think of the problem as having 10 Xs that have to be linked without crossing.






          share|cite|improve this answer











          $endgroup$









          • 1




            $begingroup$
            Indeed - you seem to use $9$ being odd, though $10$ is not
            $endgroup$
            – Henry
            1 hour ago














          1












          1








          1





          $begingroup$

          (I assume there can be no crossings at vertices or corners.)



          Here is one solution for $18$ (and @Henry, below, generalizes to $20$):



          enter image description here



          Since each segment is crossed by exactly one other segment, we can think of the problem as having 10 Xs that have to be linked without crossing.






          share|cite|improve this answer











          $endgroup$



          (I assume there can be no crossings at vertices or corners.)



          Here is one solution for $18$ (and @Henry, below, generalizes to $20$):



          enter image description here



          Since each segment is crossed by exactly one other segment, we can think of the problem as having 10 Xs that have to be linked without crossing.







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited 29 mins ago

























          answered 1 hour ago









          David G. StorkDavid G. Stork

          12k41735




          12k41735








          • 1




            $begingroup$
            Indeed - you seem to use $9$ being odd, though $10$ is not
            $endgroup$
            – Henry
            1 hour ago














          • 1




            $begingroup$
            Indeed - you seem to use $9$ being odd, though $10$ is not
            $endgroup$
            – Henry
            1 hour ago








          1




          1




          $begingroup$
          Indeed - you seem to use $9$ being odd, though $10$ is not
          $endgroup$
          – Henry
          1 hour ago




          $begingroup$
          Indeed - you seem to use $9$ being odd, though $10$ is not
          $endgroup$
          – Henry
          1 hour ago











          0












          $begingroup$

          You can certainly do it if your drawing is on a torus: draw a decagon that goes "through the hole"; then draw a zigzag (like the one in your picture) that crosses each edge of the decagon once. The two ends of the zigzag will end up on opposite "sides" of the original decagon, but can be joined "around the back". By converting the situation to one involving a "square donut" (akin to this one) you can probably do this all with straight lines, although that may be easier if the cross-section is a pentagon rather than a square...






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            I wonder if your "square donut" will force kinks in lines, thereby breaking the conditions of the problem. Possible... but not certain...
            $endgroup$
            – David G. Stork
            24 mins ago










          • $begingroup$
            You may well be right. Could be that there's a Z/2Z obstruction hiding in here somewhere.
            $endgroup$
            – John Hughes
            16 mins ago
















          0












          $begingroup$

          You can certainly do it if your drawing is on a torus: draw a decagon that goes "through the hole"; then draw a zigzag (like the one in your picture) that crosses each edge of the decagon once. The two ends of the zigzag will end up on opposite "sides" of the original decagon, but can be joined "around the back". By converting the situation to one involving a "square donut" (akin to this one) you can probably do this all with straight lines, although that may be easier if the cross-section is a pentagon rather than a square...






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            I wonder if your "square donut" will force kinks in lines, thereby breaking the conditions of the problem. Possible... but not certain...
            $endgroup$
            – David G. Stork
            24 mins ago










          • $begingroup$
            You may well be right. Could be that there's a Z/2Z obstruction hiding in here somewhere.
            $endgroup$
            – John Hughes
            16 mins ago














          0












          0








          0





          $begingroup$

          You can certainly do it if your drawing is on a torus: draw a decagon that goes "through the hole"; then draw a zigzag (like the one in your picture) that crosses each edge of the decagon once. The two ends of the zigzag will end up on opposite "sides" of the original decagon, but can be joined "around the back". By converting the situation to one involving a "square donut" (akin to this one) you can probably do this all with straight lines, although that may be easier if the cross-section is a pentagon rather than a square...






          share|cite|improve this answer









          $endgroup$



          You can certainly do it if your drawing is on a torus: draw a decagon that goes "through the hole"; then draw a zigzag (like the one in your picture) that crosses each edge of the decagon once. The two ends of the zigzag will end up on opposite "sides" of the original decagon, but can be joined "around the back". By converting the situation to one involving a "square donut" (akin to this one) you can probably do this all with straight lines, although that may be easier if the cross-section is a pentagon rather than a square...







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered 51 mins ago









          John HughesJohn Hughes

          65.2k24293




          65.2k24293












          • $begingroup$
            I wonder if your "square donut" will force kinks in lines, thereby breaking the conditions of the problem. Possible... but not certain...
            $endgroup$
            – David G. Stork
            24 mins ago










          • $begingroup$
            You may well be right. Could be that there's a Z/2Z obstruction hiding in here somewhere.
            $endgroup$
            – John Hughes
            16 mins ago


















          • $begingroup$
            I wonder if your "square donut" will force kinks in lines, thereby breaking the conditions of the problem. Possible... but not certain...
            $endgroup$
            – David G. Stork
            24 mins ago










          • $begingroup$
            You may well be right. Could be that there's a Z/2Z obstruction hiding in here somewhere.
            $endgroup$
            – John Hughes
            16 mins ago
















          $begingroup$
          I wonder if your "square donut" will force kinks in lines, thereby breaking the conditions of the problem. Possible... but not certain...
          $endgroup$
          – David G. Stork
          24 mins ago




          $begingroup$
          I wonder if your "square donut" will force kinks in lines, thereby breaking the conditions of the problem. Possible... but not certain...
          $endgroup$
          – David G. Stork
          24 mins ago












          $begingroup$
          You may well be right. Could be that there's a Z/2Z obstruction hiding in here somewhere.
          $endgroup$
          – John Hughes
          16 mins ago




          $begingroup$
          You may well be right. Could be that there's a Z/2Z obstruction hiding in here somewhere.
          $endgroup$
          – John Hughes
          16 mins ago










          Luiz Farias is a new contributor. Be nice, and check out our Code of Conduct.










          draft saved

          draft discarded


















          Luiz Farias is a new contributor. Be nice, and check out our Code of Conduct.













          Luiz Farias is a new contributor. Be nice, and check out our Code of Conduct.












          Luiz Farias is a new contributor. Be nice, and check out our Code of Conduct.
















          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3177522%2fproblem-of-parity-can-we-draw-a-closed-path-made-up-of-20-line-segments%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          What is the “three and three hundred thousand syndrome”?Who wrote the book Arena?What five creatures were...

          Gersau Kjelder | Navigasjonsmeny46°59′0″N 8°31′0″E46°59′0″N...

          Hestehale Innhaldsliste Hestehale på kvinner | Hestehale på menn | Galleri | Sjå òg |...