Why is my solution for the partial pressures of two different gases incorrect?Why does the cathode ray tube...
Incompressible fluid definition
Is my plan for fixing my water heater leak bad?
Do my Windows system binaries contain sensitive information?
Eww, those bytes are gross
Can a hotel cancel a confirmed reservation?
Can a person refuse a presidential pardon?
How to avoid being sexist when trying to employ someone to function in a very sexist environment?
Do authors have to be politically correct in article-writing?
Why zero tolerance on nudity in space?
Finding ratio of the area of triangles
How to properly claim credit for peer review?
What to do when being responsible for data protection in your lab, yet advice is ignored?
I am on the US no-fly list. What can I do in order to be allowed on flights which go through US airspace?
Walking in a rotating spacecraft and Newton's 3rd Law of Motion
Meaning of すきっとした
Inventor that creates machine that grabs man from future
Could quantum mechanics be necessary to analyze some biology scenarios?
Table enclosed in curly brackets
Meth dealer reference in Family Guy
Where is this triangular-shaped space station from?
How to push a box with physics engine by another object?
How to add multiple differently colored borders around a node?
What happens if a wizard reaches level 20 but has no 3rd-level spells that they can use with the Signature Spells feature?
Find the number of ways to express 1050 as sum of consecutive integers
Why is my solution for the partial pressures of two different gases incorrect?
Why does the cathode ray tube only start glowing at low pressures?Calculating partial pressures from mixture of gasesDoubts on Diffusion/ Effusion of gases at different pressuresDoes a mixture of gases contain equal volume to that of the container they're in? Why?
$begingroup$
I have the chemical equation: NH4NO3(s) $rightarrow$ 2H2O (g) + N2O (g). There are $12.8$ g of ammonium nitrate, and it decomposes completely in an empty container at $25.00$ C until the total pressure is $3.70$ atm.
This is what I tried:
Because there are 2 more H2O than N2O I said that there are $9.06g$ of H2O and $3.02g$ of N2O.
$$9.06gtimes {molover 18.016g}=0.503 mol H_2O$$
$$3.062times {molover 44.02g}=0.0686 mol N_2O$$
I then found the mole ratio of both compounds:
$$X_{H_{2}O}={0.503over 0.572}=0.879 $$
$$X_{N_{2}O}={0.0686over 0.572}=0.1199$$
Then I used the relationship between mole ratios and partial pressure $X_i={P_i over P_{tot}}$, where $P_{tot}=3.70atm $:
$$P_{H_2O}=(0.879)(3.70atm)=3.25atm$$
$$P_{N_2O}=(0.1199)(3.70atm)=0.444atm$$
According to the answer solution for this problem $P_{H_2O}=2.47atm$ and $P_{N_2O}=1.23atm$. What am I doing wrong? I can't figure out how to get the correct solution.
pressure
New contributor
$endgroup$
add a comment |
$begingroup$
I have the chemical equation: NH4NO3(s) $rightarrow$ 2H2O (g) + N2O (g). There are $12.8$ g of ammonium nitrate, and it decomposes completely in an empty container at $25.00$ C until the total pressure is $3.70$ atm.
This is what I tried:
Because there are 2 more H2O than N2O I said that there are $9.06g$ of H2O and $3.02g$ of N2O.
$$9.06gtimes {molover 18.016g}=0.503 mol H_2O$$
$$3.062times {molover 44.02g}=0.0686 mol N_2O$$
I then found the mole ratio of both compounds:
$$X_{H_{2}O}={0.503over 0.572}=0.879 $$
$$X_{N_{2}O}={0.0686over 0.572}=0.1199$$
Then I used the relationship between mole ratios and partial pressure $X_i={P_i over P_{tot}}$, where $P_{tot}=3.70atm $:
$$P_{H_2O}=(0.879)(3.70atm)=3.25atm$$
$$P_{N_2O}=(0.1199)(3.70atm)=0.444atm$$
According to the answer solution for this problem $P_{H_2O}=2.47atm$ and $P_{N_2O}=1.23atm$. What am I doing wrong? I can't figure out how to get the correct solution.
pressure
New contributor
$endgroup$
add a comment |
$begingroup$
I have the chemical equation: NH4NO3(s) $rightarrow$ 2H2O (g) + N2O (g). There are $12.8$ g of ammonium nitrate, and it decomposes completely in an empty container at $25.00$ C until the total pressure is $3.70$ atm.
This is what I tried:
Because there are 2 more H2O than N2O I said that there are $9.06g$ of H2O and $3.02g$ of N2O.
$$9.06gtimes {molover 18.016g}=0.503 mol H_2O$$
$$3.062times {molover 44.02g}=0.0686 mol N_2O$$
I then found the mole ratio of both compounds:
$$X_{H_{2}O}={0.503over 0.572}=0.879 $$
$$X_{N_{2}O}={0.0686over 0.572}=0.1199$$
Then I used the relationship between mole ratios and partial pressure $X_i={P_i over P_{tot}}$, where $P_{tot}=3.70atm $:
$$P_{H_2O}=(0.879)(3.70atm)=3.25atm$$
$$P_{N_2O}=(0.1199)(3.70atm)=0.444atm$$
According to the answer solution for this problem $P_{H_2O}=2.47atm$ and $P_{N_2O}=1.23atm$. What am I doing wrong? I can't figure out how to get the correct solution.
pressure
New contributor
$endgroup$
I have the chemical equation: NH4NO3(s) $rightarrow$ 2H2O (g) + N2O (g). There are $12.8$ g of ammonium nitrate, and it decomposes completely in an empty container at $25.00$ C until the total pressure is $3.70$ atm.
This is what I tried:
Because there are 2 more H2O than N2O I said that there are $9.06g$ of H2O and $3.02g$ of N2O.
$$9.06gtimes {molover 18.016g}=0.503 mol H_2O$$
$$3.062times {molover 44.02g}=0.0686 mol N_2O$$
I then found the mole ratio of both compounds:
$$X_{H_{2}O}={0.503over 0.572}=0.879 $$
$$X_{N_{2}O}={0.0686over 0.572}=0.1199$$
Then I used the relationship between mole ratios and partial pressure $X_i={P_i over P_{tot}}$, where $P_{tot}=3.70atm $:
$$P_{H_2O}=(0.879)(3.70atm)=3.25atm$$
$$P_{N_2O}=(0.1199)(3.70atm)=0.444atm$$
According to the answer solution for this problem $P_{H_2O}=2.47atm$ and $P_{N_2O}=1.23atm$. What am I doing wrong? I can't figure out how to get the correct solution.
pressure
pressure
New contributor
New contributor
New contributor
asked 4 hours ago
matryoshkamatryoshka
1084
1084
New contributor
New contributor
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
You made a mistake calculating the moles of gas and the molar fraction. If you have 12.8 g of $ce{NH4NO3}$, then you have:
$$ce{12.8 g NH4NO3}timesfrac{ce{1 mol NH4NO3}}{ce{80.04 g NH4NO3}}=ce{0.160 mol NH4NO3}$$
Since $ce{NH4NO3}$ is solid, from the balanced chemical equation it is clear that the molar fractions of $ce{H2O}$ and $ce{N2O}$ will be $2/3$ and $1/3$ respectively. With these indications, you should be able to obtain the correct answer
New contributor
$endgroup$
add a comment |
$begingroup$
The answer by camd92 is correct, but there is no reason to calculate amounts. According to the chemical equation, one third of the particles in the gas phase will be dinitrogen oxide, and two thirds will be water. So you know the mole fractions, and you can directly calculate the partial pressures. (And yes, camd92 is also correct in pointing out the mistakes in the parts of your calculation that weren't necessary in the first place).
The bottom line is that chemical equations (i.e. stoichiometry) describes the ratios of amounts, and that is exactly what you needed here to determine the partial pressure from the total pressure.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "431"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
matryoshka is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fchemistry.stackexchange.com%2fquestions%2f110355%2fwhy-is-my-solution-for-the-partial-pressures-of-two-different-gases-incorrect%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
You made a mistake calculating the moles of gas and the molar fraction. If you have 12.8 g of $ce{NH4NO3}$, then you have:
$$ce{12.8 g NH4NO3}timesfrac{ce{1 mol NH4NO3}}{ce{80.04 g NH4NO3}}=ce{0.160 mol NH4NO3}$$
Since $ce{NH4NO3}$ is solid, from the balanced chemical equation it is clear that the molar fractions of $ce{H2O}$ and $ce{N2O}$ will be $2/3$ and $1/3$ respectively. With these indications, you should be able to obtain the correct answer
New contributor
$endgroup$
add a comment |
$begingroup$
You made a mistake calculating the moles of gas and the molar fraction. If you have 12.8 g of $ce{NH4NO3}$, then you have:
$$ce{12.8 g NH4NO3}timesfrac{ce{1 mol NH4NO3}}{ce{80.04 g NH4NO3}}=ce{0.160 mol NH4NO3}$$
Since $ce{NH4NO3}$ is solid, from the balanced chemical equation it is clear that the molar fractions of $ce{H2O}$ and $ce{N2O}$ will be $2/3$ and $1/3$ respectively. With these indications, you should be able to obtain the correct answer
New contributor
$endgroup$
add a comment |
$begingroup$
You made a mistake calculating the moles of gas and the molar fraction. If you have 12.8 g of $ce{NH4NO3}$, then you have:
$$ce{12.8 g NH4NO3}timesfrac{ce{1 mol NH4NO3}}{ce{80.04 g NH4NO3}}=ce{0.160 mol NH4NO3}$$
Since $ce{NH4NO3}$ is solid, from the balanced chemical equation it is clear that the molar fractions of $ce{H2O}$ and $ce{N2O}$ will be $2/3$ and $1/3$ respectively. With these indications, you should be able to obtain the correct answer
New contributor
$endgroup$
You made a mistake calculating the moles of gas and the molar fraction. If you have 12.8 g of $ce{NH4NO3}$, then you have:
$$ce{12.8 g NH4NO3}timesfrac{ce{1 mol NH4NO3}}{ce{80.04 g NH4NO3}}=ce{0.160 mol NH4NO3}$$
Since $ce{NH4NO3}$ is solid, from the balanced chemical equation it is clear that the molar fractions of $ce{H2O}$ and $ce{N2O}$ will be $2/3$ and $1/3$ respectively. With these indications, you should be able to obtain the correct answer
New contributor
New contributor
answered 3 hours ago
camd92camd92
1316
1316
New contributor
New contributor
add a comment |
add a comment |
$begingroup$
The answer by camd92 is correct, but there is no reason to calculate amounts. According to the chemical equation, one third of the particles in the gas phase will be dinitrogen oxide, and two thirds will be water. So you know the mole fractions, and you can directly calculate the partial pressures. (And yes, camd92 is also correct in pointing out the mistakes in the parts of your calculation that weren't necessary in the first place).
The bottom line is that chemical equations (i.e. stoichiometry) describes the ratios of amounts, and that is exactly what you needed here to determine the partial pressure from the total pressure.
$endgroup$
add a comment |
$begingroup$
The answer by camd92 is correct, but there is no reason to calculate amounts. According to the chemical equation, one third of the particles in the gas phase will be dinitrogen oxide, and two thirds will be water. So you know the mole fractions, and you can directly calculate the partial pressures. (And yes, camd92 is also correct in pointing out the mistakes in the parts of your calculation that weren't necessary in the first place).
The bottom line is that chemical equations (i.e. stoichiometry) describes the ratios of amounts, and that is exactly what you needed here to determine the partial pressure from the total pressure.
$endgroup$
add a comment |
$begingroup$
The answer by camd92 is correct, but there is no reason to calculate amounts. According to the chemical equation, one third of the particles in the gas phase will be dinitrogen oxide, and two thirds will be water. So you know the mole fractions, and you can directly calculate the partial pressures. (And yes, camd92 is also correct in pointing out the mistakes in the parts of your calculation that weren't necessary in the first place).
The bottom line is that chemical equations (i.e. stoichiometry) describes the ratios of amounts, and that is exactly what you needed here to determine the partial pressure from the total pressure.
$endgroup$
The answer by camd92 is correct, but there is no reason to calculate amounts. According to the chemical equation, one third of the particles in the gas phase will be dinitrogen oxide, and two thirds will be water. So you know the mole fractions, and you can directly calculate the partial pressures. (And yes, camd92 is also correct in pointing out the mistakes in the parts of your calculation that weren't necessary in the first place).
The bottom line is that chemical equations (i.e. stoichiometry) describes the ratios of amounts, and that is exactly what you needed here to determine the partial pressure from the total pressure.
answered 2 hours ago
Karsten TheisKarsten Theis
2,070325
2,070325
add a comment |
add a comment |
matryoshka is a new contributor. Be nice, and check out our Code of Conduct.
matryoshka is a new contributor. Be nice, and check out our Code of Conduct.
matryoshka is a new contributor. Be nice, and check out our Code of Conduct.
matryoshka is a new contributor. Be nice, and check out our Code of Conduct.
Thanks for contributing an answer to Chemistry Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fchemistry.stackexchange.com%2fquestions%2f110355%2fwhy-is-my-solution-for-the-partial-pressures-of-two-different-gases-incorrect%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown