Can the alpha, lambda values of a glmnet object output determine whether ridge or Lasso?Why do Lars and...

How is it possible to drive VGA displays at such high pixel clock frequencies?

Are all players supposed to be able to see each others' character sheets?

How to design an organic heat-shield?

What do you call someone who likes to pick fights?

Can't make sense of a paragraph from Lovecraft

Source permutation

Expressing logarithmic equations without logs

Is it possible that a question has only two answers?

How do we create new idioms and use them in a novel?

The meaning of ‘otherwise’

Plausibility of Mushroom Buildings

How many characters using PHB rules does it take to be able to have access to any PHB spell at the start of an adventuring day?

What is this diamond of every day?

Giving a career talk in my old university, how prominently should I tell students my salary?

Why do we say ‘pairwise disjoint’, rather than ‘disjoint’?

Is it safe to abruptly remove Arduino power?

What are some noteworthy "mic-drop" moments in math?

After `ssh` without `-X` to a machine, is it possible to change `$DISPLAY` to make it work like `ssh -X`?

What is the generally accepted pronunciation of “topoi”?

I can't die. Who am I?

Power Strip for Europe

Possible to detect presence of nuclear bomb?

Specifying a starting column with colortbl package and xcolor

Gaining more land



Can the alpha, lambda values of a glmnet object output determine whether ridge or Lasso?


Why do Lars and Glmnet give different solutions for the Lasso problem?What does the varImp function in the caret package actually compute for a glmnet (elastic net) objectWhat are the differences between Ridge regression using R's glmnet and Python's scikit-learn?Using lasso regression in Matlab with constraints on lambda valuesHow to interpret the results when both ridge and lasso separately perform well but produce different coefficientsUsing different alpha values in glmnet when comparing two feature sets?r: coefficients from glmnet and caret are different for the same lambdaWhat is the difference between the lambda function in ridge regression vs in lasso regression?In LASSO, does it make sense to choose lambda based on the mean error associated with different lambda values, over multiple cross-validations?glmnet: Nested cross validation, tuning alpha and lambda













2












$begingroup$


Given a glmnet object using train() where trControl method is "cv" and number of iterations is 5, I obtained that the bestTune alpha and lambda values are alpha=0.1 and lambda= 0.007688342. On running the glmnet object, I notice that the alpha values start from 0.1.
Can the inference here be that the method used is Lasso and not ridge because of the non-negative alpha value?



In general, can the values of alpha, lambda indicate which model is being used?










share|cite|improve this question







New contributor




red4life93 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$

















    2












    $begingroup$


    Given a glmnet object using train() where trControl method is "cv" and number of iterations is 5, I obtained that the bestTune alpha and lambda values are alpha=0.1 and lambda= 0.007688342. On running the glmnet object, I notice that the alpha values start from 0.1.
    Can the inference here be that the method used is Lasso and not ridge because of the non-negative alpha value?



    In general, can the values of alpha, lambda indicate which model is being used?










    share|cite|improve this question







    New contributor




    red4life93 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.







    $endgroup$















      2












      2








      2





      $begingroup$


      Given a glmnet object using train() where trControl method is "cv" and number of iterations is 5, I obtained that the bestTune alpha and lambda values are alpha=0.1 and lambda= 0.007688342. On running the glmnet object, I notice that the alpha values start from 0.1.
      Can the inference here be that the method used is Lasso and not ridge because of the non-negative alpha value?



      In general, can the values of alpha, lambda indicate which model is being used?










      share|cite|improve this question







      New contributor




      red4life93 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.







      $endgroup$




      Given a glmnet object using train() where trControl method is "cv" and number of iterations is 5, I obtained that the bestTune alpha and lambda values are alpha=0.1 and lambda= 0.007688342. On running the glmnet object, I notice that the alpha values start from 0.1.
      Can the inference here be that the method used is Lasso and not ridge because of the non-negative alpha value?



      In general, can the values of alpha, lambda indicate which model is being used?







      regression generalized-linear-model cross-validation caret






      share|cite|improve this question







      New contributor




      red4life93 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.











      share|cite|improve this question







      New contributor




      red4life93 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      share|cite|improve this question




      share|cite|improve this question






      New contributor




      red4life93 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      asked 2 hours ago









      red4life93red4life93

      111




      111




      New contributor




      red4life93 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.





      New contributor





      red4life93 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






      red4life93 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






















          2 Answers
          2






          active

          oldest

          votes


















          1












          $begingroup$

          Absolutely! The $alpha$ parameter can be adjusted to either fit a Lasso or a Ridge regression (or something in between). Recall that the loss function which Elastic Net minimizes is $$frac{1}{2N}sum^N_{i=1}(y_i-beta_0-x_i^tbeta)^2+lambdasum_{j=1}^p(frac{1}{2}(1-alpha)beta_j^2+alpha|beta_j|).$$
          Focus on the second big sum (the one multiplied by $lambda$). If you let $alpha=1$, the first term inside this sum becomes $0$, and the whole function becomes exactly the function that Lasso minimizes (or the Lasso loss function). If you let $alpha=0$, the second term becomes $0$ and you are left with Ridge.



          You can check the loss for Ridge and Lasso in this book and for elastic net in this paper.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            This looks like a good answer but can you edit to include citations for the hyperlinks? Over time, links die.
            $endgroup$
            – Sycorax
            2 hours ago



















          1












          $begingroup$

          As far as I understand glmnet, $alpha=0$ would actually be a ridge penalty, and $alpha=1$ would be a Lasso penalty (rather than the other way around) and as far as glmnet is concerned you can fit those end cases.



          The penalty with $alpha=0.1$ would be fairly similar to the ridge penalty but it is not the ridge penalty; if it's not considering $alpha$ below $0.1$ you can't necessarily infer much more than that just from the fact that you had that endpoint. If you know that an $alpha$ value that was only slightly larger was worse then it would be likely that a larger range might have chosen a smaller $alpha$, but it doesn't suggest it would have been $0$; I expect it would not. If the grid of values is coarse it may well have been that a larger value than $0.1$ would be better.



          [You may want to check whether there was some other reason that $alpha$ might have been at an endpoint; e.g. I seem to recall $lambda$ got set to an endpoint in forecasting if coefficients for lambdaOpt were not saved.]






          share|cite|improve this answer











          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "65"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: false,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: null,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });






            red4life93 is a new contributor. Be nice, and check out our Code of Conduct.










            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstats.stackexchange.com%2fquestions%2f396748%2fcan-the-alpha-lambda-values-of-a-glmnet-object-output-determine-whether-ridge-o%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            1












            $begingroup$

            Absolutely! The $alpha$ parameter can be adjusted to either fit a Lasso or a Ridge regression (or something in between). Recall that the loss function which Elastic Net minimizes is $$frac{1}{2N}sum^N_{i=1}(y_i-beta_0-x_i^tbeta)^2+lambdasum_{j=1}^p(frac{1}{2}(1-alpha)beta_j^2+alpha|beta_j|).$$
            Focus on the second big sum (the one multiplied by $lambda$). If you let $alpha=1$, the first term inside this sum becomes $0$, and the whole function becomes exactly the function that Lasso minimizes (or the Lasso loss function). If you let $alpha=0$, the second term becomes $0$ and you are left with Ridge.



            You can check the loss for Ridge and Lasso in this book and for elastic net in this paper.






            share|cite|improve this answer









            $endgroup$













            • $begingroup$
              This looks like a good answer but can you edit to include citations for the hyperlinks? Over time, links die.
              $endgroup$
              – Sycorax
              2 hours ago
















            1












            $begingroup$

            Absolutely! The $alpha$ parameter can be adjusted to either fit a Lasso or a Ridge regression (or something in between). Recall that the loss function which Elastic Net minimizes is $$frac{1}{2N}sum^N_{i=1}(y_i-beta_0-x_i^tbeta)^2+lambdasum_{j=1}^p(frac{1}{2}(1-alpha)beta_j^2+alpha|beta_j|).$$
            Focus on the second big sum (the one multiplied by $lambda$). If you let $alpha=1$, the first term inside this sum becomes $0$, and the whole function becomes exactly the function that Lasso minimizes (or the Lasso loss function). If you let $alpha=0$, the second term becomes $0$ and you are left with Ridge.



            You can check the loss for Ridge and Lasso in this book and for elastic net in this paper.






            share|cite|improve this answer









            $endgroup$













            • $begingroup$
              This looks like a good answer but can you edit to include citations for the hyperlinks? Over time, links die.
              $endgroup$
              – Sycorax
              2 hours ago














            1












            1








            1





            $begingroup$

            Absolutely! The $alpha$ parameter can be adjusted to either fit a Lasso or a Ridge regression (or something in between). Recall that the loss function which Elastic Net minimizes is $$frac{1}{2N}sum^N_{i=1}(y_i-beta_0-x_i^tbeta)^2+lambdasum_{j=1}^p(frac{1}{2}(1-alpha)beta_j^2+alpha|beta_j|).$$
            Focus on the second big sum (the one multiplied by $lambda$). If you let $alpha=1$, the first term inside this sum becomes $0$, and the whole function becomes exactly the function that Lasso minimizes (or the Lasso loss function). If you let $alpha=0$, the second term becomes $0$ and you are left with Ridge.



            You can check the loss for Ridge and Lasso in this book and for elastic net in this paper.






            share|cite|improve this answer









            $endgroup$



            Absolutely! The $alpha$ parameter can be adjusted to either fit a Lasso or a Ridge regression (or something in between). Recall that the loss function which Elastic Net minimizes is $$frac{1}{2N}sum^N_{i=1}(y_i-beta_0-x_i^tbeta)^2+lambdasum_{j=1}^p(frac{1}{2}(1-alpha)beta_j^2+alpha|beta_j|).$$
            Focus on the second big sum (the one multiplied by $lambda$). If you let $alpha=1$, the first term inside this sum becomes $0$, and the whole function becomes exactly the function that Lasso minimizes (or the Lasso loss function). If you let $alpha=0$, the second term becomes $0$ and you are left with Ridge.



            You can check the loss for Ridge and Lasso in this book and for elastic net in this paper.







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered 2 hours ago









            BananinBananin

            1795




            1795












            • $begingroup$
              This looks like a good answer but can you edit to include citations for the hyperlinks? Over time, links die.
              $endgroup$
              – Sycorax
              2 hours ago


















            • $begingroup$
              This looks like a good answer but can you edit to include citations for the hyperlinks? Over time, links die.
              $endgroup$
              – Sycorax
              2 hours ago
















            $begingroup$
            This looks like a good answer but can you edit to include citations for the hyperlinks? Over time, links die.
            $endgroup$
            – Sycorax
            2 hours ago




            $begingroup$
            This looks like a good answer but can you edit to include citations for the hyperlinks? Over time, links die.
            $endgroup$
            – Sycorax
            2 hours ago













            1












            $begingroup$

            As far as I understand glmnet, $alpha=0$ would actually be a ridge penalty, and $alpha=1$ would be a Lasso penalty (rather than the other way around) and as far as glmnet is concerned you can fit those end cases.



            The penalty with $alpha=0.1$ would be fairly similar to the ridge penalty but it is not the ridge penalty; if it's not considering $alpha$ below $0.1$ you can't necessarily infer much more than that just from the fact that you had that endpoint. If you know that an $alpha$ value that was only slightly larger was worse then it would be likely that a larger range might have chosen a smaller $alpha$, but it doesn't suggest it would have been $0$; I expect it would not. If the grid of values is coarse it may well have been that a larger value than $0.1$ would be better.



            [You may want to check whether there was some other reason that $alpha$ might have been at an endpoint; e.g. I seem to recall $lambda$ got set to an endpoint in forecasting if coefficients for lambdaOpt were not saved.]






            share|cite|improve this answer











            $endgroup$


















              1












              $begingroup$

              As far as I understand glmnet, $alpha=0$ would actually be a ridge penalty, and $alpha=1$ would be a Lasso penalty (rather than the other way around) and as far as glmnet is concerned you can fit those end cases.



              The penalty with $alpha=0.1$ would be fairly similar to the ridge penalty but it is not the ridge penalty; if it's not considering $alpha$ below $0.1$ you can't necessarily infer much more than that just from the fact that you had that endpoint. If you know that an $alpha$ value that was only slightly larger was worse then it would be likely that a larger range might have chosen a smaller $alpha$, but it doesn't suggest it would have been $0$; I expect it would not. If the grid of values is coarse it may well have been that a larger value than $0.1$ would be better.



              [You may want to check whether there was some other reason that $alpha$ might have been at an endpoint; e.g. I seem to recall $lambda$ got set to an endpoint in forecasting if coefficients for lambdaOpt were not saved.]






              share|cite|improve this answer











              $endgroup$
















                1












                1








                1





                $begingroup$

                As far as I understand glmnet, $alpha=0$ would actually be a ridge penalty, and $alpha=1$ would be a Lasso penalty (rather than the other way around) and as far as glmnet is concerned you can fit those end cases.



                The penalty with $alpha=0.1$ would be fairly similar to the ridge penalty but it is not the ridge penalty; if it's not considering $alpha$ below $0.1$ you can't necessarily infer much more than that just from the fact that you had that endpoint. If you know that an $alpha$ value that was only slightly larger was worse then it would be likely that a larger range might have chosen a smaller $alpha$, but it doesn't suggest it would have been $0$; I expect it would not. If the grid of values is coarse it may well have been that a larger value than $0.1$ would be better.



                [You may want to check whether there was some other reason that $alpha$ might have been at an endpoint; e.g. I seem to recall $lambda$ got set to an endpoint in forecasting if coefficients for lambdaOpt were not saved.]






                share|cite|improve this answer











                $endgroup$



                As far as I understand glmnet, $alpha=0$ would actually be a ridge penalty, and $alpha=1$ would be a Lasso penalty (rather than the other way around) and as far as glmnet is concerned you can fit those end cases.



                The penalty with $alpha=0.1$ would be fairly similar to the ridge penalty but it is not the ridge penalty; if it's not considering $alpha$ below $0.1$ you can't necessarily infer much more than that just from the fact that you had that endpoint. If you know that an $alpha$ value that was only slightly larger was worse then it would be likely that a larger range might have chosen a smaller $alpha$, but it doesn't suggest it would have been $0$; I expect it would not. If the grid of values is coarse it may well have been that a larger value than $0.1$ would be better.



                [You may want to check whether there was some other reason that $alpha$ might have been at an endpoint; e.g. I seem to recall $lambda$ got set to an endpoint in forecasting if coefficients for lambdaOpt were not saved.]







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited 2 hours ago

























                answered 2 hours ago









                Glen_bGlen_b

                213k22412762




                213k22412762






















                    red4life93 is a new contributor. Be nice, and check out our Code of Conduct.










                    draft saved

                    draft discarded


















                    red4life93 is a new contributor. Be nice, and check out our Code of Conduct.













                    red4life93 is a new contributor. Be nice, and check out our Code of Conduct.












                    red4life93 is a new contributor. Be nice, and check out our Code of Conduct.
















                    Thanks for contributing an answer to Cross Validated!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstats.stackexchange.com%2fquestions%2f396748%2fcan-the-alpha-lambda-values-of-a-glmnet-object-output-determine-whether-ridge-o%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    What is the “three and three hundred thousand syndrome”?Who wrote the book Arena?What five creatures were...

                    Gersau Kjelder | Navigasjonsmeny46°59′0″N 8°31′0″E46°59′0″N...

                    Hestehale Innhaldsliste Hestehale på kvinner | Hestehale på menn | Galleri | Sjå òg |...