A small doubt about the dominated convergence theorem The Next CEO of Stack OverflowIs...

Solving system of ODEs with extra parameter

Is it professional to write unrelated content in an almost-empty email?

Why did CATV standarize in 75 ohms and everyone else in 50?

Why do airplanes bank sharply to the right after air-to-air refueling?

If Nick Fury and Coulson already knew about aliens (Kree and Skrull) why did they wait until Thor's appearance to start making weapons?

Help understanding this unsettling image of Titan, Epimetheus, and Saturn's rings?

What was the first Unix version to run on a microcomputer?

Is there a difference between "Fahrstuhl" and "Aufzug"

Is wanting to ask what to write an indication that you need to change your story?

Would this house-rule that treats advantage as a +1 to the roll instead (and disadvantage as -1) and allows them to stack be balanced?

Why does standard notation not preserve intervals (visually)

Some questions about different axiomatic systems for neighbourhoods

How to place nodes around a circle from some initial angle?

How to install OpenCV on Raspbian Stretch?

INSERT to a table from a database to other (same SQL Server) using Dynamic SQL

0 rank tensor vs 1D vector

How did people program for Consoles with multiple CPUs?

Can a Bladesinger Wizard use Bladesong with a Hand Crossbow?

Rotate a column

Why didn't Khan get resurrected in the Genesis Explosion?

Does soap repel water?

Unclear about dynamic binding

Can MTA send mail via a relay without being told so?

Which one is the true statement?



A small doubt about the dominated convergence theorem



The Next CEO of Stack OverflowIs Lebesgue's Dominated Convergence Theorem a logical equivalence?Generalisation of Dominated Convergence TheoremLebesgue Convergence using The General Lebesgue Dominated Convergence TheoremVariant of dominated convergence theoremExample about Dominated Convergence TheoremDominated Convergence TheoremHypothesis of dominated convergence theoremBartle's proof of Lebesgue Dominated Convergence TheoremAn counterexample for the monotone convergence theorem and dominated convergence theoremTheorem similar to dominated convergence theorem












2












$begingroup$



Theorem $mathbf{A.2.11}$ (Dominated convergence). Let $f_n : X to mathbb R$ be a sequence of measurable functions and assume that there exists some integrable function $g : X to mathbb R$ such that $|f_n(x)| leq |g(x)|$ for $mu$-almost every $x$ in $X$. Assume moreover that the sequence $(f_n)_n$ converges at $mu$-almost every point to some function $f : X to mathbb R$. Then $f$ is integrable and satisfies $$lim_n int f_n , dmu = int f , dmu.$$




I wanted to know if in the hypothesis $|f_n(x)| leq|g(x)|$ above, if I already know that each $f_n$ is integrable, besides convergent, the theorem remains valid? Without me having to find this $g$ integrable?










share|cite|improve this question











$endgroup$

















    2












    $begingroup$



    Theorem $mathbf{A.2.11}$ (Dominated convergence). Let $f_n : X to mathbb R$ be a sequence of measurable functions and assume that there exists some integrable function $g : X to mathbb R$ such that $|f_n(x)| leq |g(x)|$ for $mu$-almost every $x$ in $X$. Assume moreover that the sequence $(f_n)_n$ converges at $mu$-almost every point to some function $f : X to mathbb R$. Then $f$ is integrable and satisfies $$lim_n int f_n , dmu = int f , dmu.$$




    I wanted to know if in the hypothesis $|f_n(x)| leq|g(x)|$ above, if I already know that each $f_n$ is integrable, besides convergent, the theorem remains valid? Without me having to find this $g$ integrable?










    share|cite|improve this question











    $endgroup$















      2












      2








      2





      $begingroup$



      Theorem $mathbf{A.2.11}$ (Dominated convergence). Let $f_n : X to mathbb R$ be a sequence of measurable functions and assume that there exists some integrable function $g : X to mathbb R$ such that $|f_n(x)| leq |g(x)|$ for $mu$-almost every $x$ in $X$. Assume moreover that the sequence $(f_n)_n$ converges at $mu$-almost every point to some function $f : X to mathbb R$. Then $f$ is integrable and satisfies $$lim_n int f_n , dmu = int f , dmu.$$




      I wanted to know if in the hypothesis $|f_n(x)| leq|g(x)|$ above, if I already know that each $f_n$ is integrable, besides convergent, the theorem remains valid? Without me having to find this $g$ integrable?










      share|cite|improve this question











      $endgroup$





      Theorem $mathbf{A.2.11}$ (Dominated convergence). Let $f_n : X to mathbb R$ be a sequence of measurable functions and assume that there exists some integrable function $g : X to mathbb R$ such that $|f_n(x)| leq |g(x)|$ for $mu$-almost every $x$ in $X$. Assume moreover that the sequence $(f_n)_n$ converges at $mu$-almost every point to some function $f : X to mathbb R$. Then $f$ is integrable and satisfies $$lim_n int f_n , dmu = int f , dmu.$$




      I wanted to know if in the hypothesis $|f_n(x)| leq|g(x)|$ above, if I already know that each $f_n$ is integrable, besides convergent, the theorem remains valid? Without me having to find this $g$ integrable?







      measure-theory convergence lebesgue-integral






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited 37 mins ago









      Rócherz

      3,0013821




      3,0013821










      asked 50 mins ago









      Ricardo FreireRicardo Freire

      574211




      574211






















          2 Answers
          2






          active

          oldest

          votes


















          3












          $begingroup$

          This is an excellent question. For the theorem to apply, you need the $f_n$'s to be uniformly dominated by an integrable function $g$. To see this, consider the sequence
          $$
          f_n(x) := frac{1}{n} mathbf{1}_{[0,n]}(x).
          $$

          Clearly, $f_n in L^1(mathbb{R})$ for each $n in mathbb{N}$. Moreover, $f_n(x) to 0$ as $n to infty$ for each $x in mathbb{R}$. However,
          begin{align*}
          lim_{n to infty} int_{mathbb{R}} f_n,mathrm{d}m = lim_{n to infty} int_0^n frac{1}{n},mathrm{d}x = 1 neq 0.
          end{align*}



          Nevertheless, you are not in too much trouble if you cannot find a dominating function. If your sequence of functions is uniformly bounded in $L^p(E)$ for $1 < p < infty$ where $E$ has finite measure, then you can still take the limit inside the integral. Namely, the following theorem often helps to rectify the situation.




          Theorem. Let $(f_n)$ be a sequence of measurable functions on a measure space $(X,mathfrak{M},mu)$ converging almost everywhere to a measurable function $f$. If $E subset X$ has finite measure and $(f_n)$ is bounded in $L^p(E)$ for some $1 < p < infty$, then
          $$
          lim_{n to infty} int_E f_n,mathrm{d}mu = int_E f,mathrm{d}mu.
          $$

          In fact, one has $f_n to f$ strongly in $L^1(E)$.




          In a sense, one can do without a dominating function when the sequence is uniformly bounded in a "higher $L^p$-space" and the domain of integration has finite measure.






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            I understood. Thanks a lot for the help
            $endgroup$
            – Ricardo Freire
            18 mins ago



















          2












          $begingroup$

          In general, it is not sufficient that each $f_n$ be integrable without a dominating function. For instance, the functions $f_n = chi_{[n,n+1]}$ on $mathbf R_{ge 0}$ are all integrable, and $f_n(x) to 0$ for all $xin mathbf R_{ge 0}$, but they are not dominated by an integrable function $g$, and indeed we do not have
          $$
          lim_{ntoinfty} int f_n = int lim_{ntoinfty}f_n
          $$

          since in this case, the left-hand side is $1$, but the right-hand side is $0$.





          To see why there is no dominating function $g$, such a function would have the property that $g(x)ge 1$ for each $xge 0$, so it would not be integrable on $mathbf R_{ge 0}$.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            I understood. Thanks a lot for the help
            $endgroup$
            – Ricardo Freire
            18 mins ago












          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3168945%2fa-small-doubt-about-the-dominated-convergence-theorem%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          2 Answers
          2






          active

          oldest

          votes








          2 Answers
          2






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          3












          $begingroup$

          This is an excellent question. For the theorem to apply, you need the $f_n$'s to be uniformly dominated by an integrable function $g$. To see this, consider the sequence
          $$
          f_n(x) := frac{1}{n} mathbf{1}_{[0,n]}(x).
          $$

          Clearly, $f_n in L^1(mathbb{R})$ for each $n in mathbb{N}$. Moreover, $f_n(x) to 0$ as $n to infty$ for each $x in mathbb{R}$. However,
          begin{align*}
          lim_{n to infty} int_{mathbb{R}} f_n,mathrm{d}m = lim_{n to infty} int_0^n frac{1}{n},mathrm{d}x = 1 neq 0.
          end{align*}



          Nevertheless, you are not in too much trouble if you cannot find a dominating function. If your sequence of functions is uniformly bounded in $L^p(E)$ for $1 < p < infty$ where $E$ has finite measure, then you can still take the limit inside the integral. Namely, the following theorem often helps to rectify the situation.




          Theorem. Let $(f_n)$ be a sequence of measurable functions on a measure space $(X,mathfrak{M},mu)$ converging almost everywhere to a measurable function $f$. If $E subset X$ has finite measure and $(f_n)$ is bounded in $L^p(E)$ for some $1 < p < infty$, then
          $$
          lim_{n to infty} int_E f_n,mathrm{d}mu = int_E f,mathrm{d}mu.
          $$

          In fact, one has $f_n to f$ strongly in $L^1(E)$.




          In a sense, one can do without a dominating function when the sequence is uniformly bounded in a "higher $L^p$-space" and the domain of integration has finite measure.






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            I understood. Thanks a lot for the help
            $endgroup$
            – Ricardo Freire
            18 mins ago
















          3












          $begingroup$

          This is an excellent question. For the theorem to apply, you need the $f_n$'s to be uniformly dominated by an integrable function $g$. To see this, consider the sequence
          $$
          f_n(x) := frac{1}{n} mathbf{1}_{[0,n]}(x).
          $$

          Clearly, $f_n in L^1(mathbb{R})$ for each $n in mathbb{N}$. Moreover, $f_n(x) to 0$ as $n to infty$ for each $x in mathbb{R}$. However,
          begin{align*}
          lim_{n to infty} int_{mathbb{R}} f_n,mathrm{d}m = lim_{n to infty} int_0^n frac{1}{n},mathrm{d}x = 1 neq 0.
          end{align*}



          Nevertheless, you are not in too much trouble if you cannot find a dominating function. If your sequence of functions is uniformly bounded in $L^p(E)$ for $1 < p < infty$ where $E$ has finite measure, then you can still take the limit inside the integral. Namely, the following theorem often helps to rectify the situation.




          Theorem. Let $(f_n)$ be a sequence of measurable functions on a measure space $(X,mathfrak{M},mu)$ converging almost everywhere to a measurable function $f$. If $E subset X$ has finite measure and $(f_n)$ is bounded in $L^p(E)$ for some $1 < p < infty$, then
          $$
          lim_{n to infty} int_E f_n,mathrm{d}mu = int_E f,mathrm{d}mu.
          $$

          In fact, one has $f_n to f$ strongly in $L^1(E)$.




          In a sense, one can do without a dominating function when the sequence is uniformly bounded in a "higher $L^p$-space" and the domain of integration has finite measure.






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            I understood. Thanks a lot for the help
            $endgroup$
            – Ricardo Freire
            18 mins ago














          3












          3








          3





          $begingroup$

          This is an excellent question. For the theorem to apply, you need the $f_n$'s to be uniformly dominated by an integrable function $g$. To see this, consider the sequence
          $$
          f_n(x) := frac{1}{n} mathbf{1}_{[0,n]}(x).
          $$

          Clearly, $f_n in L^1(mathbb{R})$ for each $n in mathbb{N}$. Moreover, $f_n(x) to 0$ as $n to infty$ for each $x in mathbb{R}$. However,
          begin{align*}
          lim_{n to infty} int_{mathbb{R}} f_n,mathrm{d}m = lim_{n to infty} int_0^n frac{1}{n},mathrm{d}x = 1 neq 0.
          end{align*}



          Nevertheless, you are not in too much trouble if you cannot find a dominating function. If your sequence of functions is uniformly bounded in $L^p(E)$ for $1 < p < infty$ where $E$ has finite measure, then you can still take the limit inside the integral. Namely, the following theorem often helps to rectify the situation.




          Theorem. Let $(f_n)$ be a sequence of measurable functions on a measure space $(X,mathfrak{M},mu)$ converging almost everywhere to a measurable function $f$. If $E subset X$ has finite measure and $(f_n)$ is bounded in $L^p(E)$ for some $1 < p < infty$, then
          $$
          lim_{n to infty} int_E f_n,mathrm{d}mu = int_E f,mathrm{d}mu.
          $$

          In fact, one has $f_n to f$ strongly in $L^1(E)$.




          In a sense, one can do without a dominating function when the sequence is uniformly bounded in a "higher $L^p$-space" and the domain of integration has finite measure.






          share|cite|improve this answer











          $endgroup$



          This is an excellent question. For the theorem to apply, you need the $f_n$'s to be uniformly dominated by an integrable function $g$. To see this, consider the sequence
          $$
          f_n(x) := frac{1}{n} mathbf{1}_{[0,n]}(x).
          $$

          Clearly, $f_n in L^1(mathbb{R})$ for each $n in mathbb{N}$. Moreover, $f_n(x) to 0$ as $n to infty$ for each $x in mathbb{R}$. However,
          begin{align*}
          lim_{n to infty} int_{mathbb{R}} f_n,mathrm{d}m = lim_{n to infty} int_0^n frac{1}{n},mathrm{d}x = 1 neq 0.
          end{align*}



          Nevertheless, you are not in too much trouble if you cannot find a dominating function. If your sequence of functions is uniformly bounded in $L^p(E)$ for $1 < p < infty$ where $E$ has finite measure, then you can still take the limit inside the integral. Namely, the following theorem often helps to rectify the situation.




          Theorem. Let $(f_n)$ be a sequence of measurable functions on a measure space $(X,mathfrak{M},mu)$ converging almost everywhere to a measurable function $f$. If $E subset X$ has finite measure and $(f_n)$ is bounded in $L^p(E)$ for some $1 < p < infty$, then
          $$
          lim_{n to infty} int_E f_n,mathrm{d}mu = int_E f,mathrm{d}mu.
          $$

          In fact, one has $f_n to f$ strongly in $L^1(E)$.




          In a sense, one can do without a dominating function when the sequence is uniformly bounded in a "higher $L^p$-space" and the domain of integration has finite measure.







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited 43 secs ago

























          answered 32 mins ago









          rolandcyprolandcyp

          1,856315




          1,856315












          • $begingroup$
            I understood. Thanks a lot for the help
            $endgroup$
            – Ricardo Freire
            18 mins ago


















          • $begingroup$
            I understood. Thanks a lot for the help
            $endgroup$
            – Ricardo Freire
            18 mins ago
















          $begingroup$
          I understood. Thanks a lot for the help
          $endgroup$
          – Ricardo Freire
          18 mins ago




          $begingroup$
          I understood. Thanks a lot for the help
          $endgroup$
          – Ricardo Freire
          18 mins ago











          2












          $begingroup$

          In general, it is not sufficient that each $f_n$ be integrable without a dominating function. For instance, the functions $f_n = chi_{[n,n+1]}$ on $mathbf R_{ge 0}$ are all integrable, and $f_n(x) to 0$ for all $xin mathbf R_{ge 0}$, but they are not dominated by an integrable function $g$, and indeed we do not have
          $$
          lim_{ntoinfty} int f_n = int lim_{ntoinfty}f_n
          $$

          since in this case, the left-hand side is $1$, but the right-hand side is $0$.





          To see why there is no dominating function $g$, such a function would have the property that $g(x)ge 1$ for each $xge 0$, so it would not be integrable on $mathbf R_{ge 0}$.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            I understood. Thanks a lot for the help
            $endgroup$
            – Ricardo Freire
            18 mins ago
















          2












          $begingroup$

          In general, it is not sufficient that each $f_n$ be integrable without a dominating function. For instance, the functions $f_n = chi_{[n,n+1]}$ on $mathbf R_{ge 0}$ are all integrable, and $f_n(x) to 0$ for all $xin mathbf R_{ge 0}$, but they are not dominated by an integrable function $g$, and indeed we do not have
          $$
          lim_{ntoinfty} int f_n = int lim_{ntoinfty}f_n
          $$

          since in this case, the left-hand side is $1$, but the right-hand side is $0$.





          To see why there is no dominating function $g$, such a function would have the property that $g(x)ge 1$ for each $xge 0$, so it would not be integrable on $mathbf R_{ge 0}$.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            I understood. Thanks a lot for the help
            $endgroup$
            – Ricardo Freire
            18 mins ago














          2












          2








          2





          $begingroup$

          In general, it is not sufficient that each $f_n$ be integrable without a dominating function. For instance, the functions $f_n = chi_{[n,n+1]}$ on $mathbf R_{ge 0}$ are all integrable, and $f_n(x) to 0$ for all $xin mathbf R_{ge 0}$, but they are not dominated by an integrable function $g$, and indeed we do not have
          $$
          lim_{ntoinfty} int f_n = int lim_{ntoinfty}f_n
          $$

          since in this case, the left-hand side is $1$, but the right-hand side is $0$.





          To see why there is no dominating function $g$, such a function would have the property that $g(x)ge 1$ for each $xge 0$, so it would not be integrable on $mathbf R_{ge 0}$.






          share|cite|improve this answer









          $endgroup$



          In general, it is not sufficient that each $f_n$ be integrable without a dominating function. For instance, the functions $f_n = chi_{[n,n+1]}$ on $mathbf R_{ge 0}$ are all integrable, and $f_n(x) to 0$ for all $xin mathbf R_{ge 0}$, but they are not dominated by an integrable function $g$, and indeed we do not have
          $$
          lim_{ntoinfty} int f_n = int lim_{ntoinfty}f_n
          $$

          since in this case, the left-hand side is $1$, but the right-hand side is $0$.





          To see why there is no dominating function $g$, such a function would have the property that $g(x)ge 1$ for each $xge 0$, so it would not be integrable on $mathbf R_{ge 0}$.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered 31 mins ago









          Alex OrtizAlex Ortiz

          11.2k21441




          11.2k21441












          • $begingroup$
            I understood. Thanks a lot for the help
            $endgroup$
            – Ricardo Freire
            18 mins ago


















          • $begingroup$
            I understood. Thanks a lot for the help
            $endgroup$
            – Ricardo Freire
            18 mins ago
















          $begingroup$
          I understood. Thanks a lot for the help
          $endgroup$
          – Ricardo Freire
          18 mins ago




          $begingroup$
          I understood. Thanks a lot for the help
          $endgroup$
          – Ricardo Freire
          18 mins ago


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3168945%2fa-small-doubt-about-the-dominated-convergence-theorem%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Gersau Kjelder | Navigasjonsmeny46°59′0″N 8°31′0″E46°59′0″N...

          What is the “three and three hundred thousand syndrome”?Who wrote the book Arena?What five creatures were...

          Are all UTXOs locked by an address spent in a transaction?UTXO all sent to change address?Signing...