Find the number of surjections from A to B.Pascal's relation theorem from the book Combinatorics, R. Merris;...

How to manage monthly salary

What do you call something that goes against the spirit of the law, but is legal when interpreting the law to the letter?

Find the number of surjections from A to B.

Prime joint compound before latex paint?

How to answer pointed "are you quitting" questioning when I don't want them to suspect

How can I add custom success page

Denied boarding due to overcrowding, Sparpreis ticket. What are my rights?

How would photo IDs work for shapeshifters?

What are the advantages and disadvantages of running one shots compared to campaigns?

Patience, young "Padovan"

Unbreakable Formation vs. Cry of the Carnarium

Finding files for which a command fails

When blogging recipes, how can I support both readers who want the narrative/journey and ones who want the printer-friendly recipe?

Why airport relocation isn't done gradually?

"listening to me about as much as you're listening to this pole here"

Can I find out the caloric content of bread by dehydrating it?

What to wear for invited talk in Canada

Are cabin dividers used to "hide" the flex of the airplane?

What is GPS' 19 year rollover and does it present a cybersecurity issue?

Why doesn't a const reference extend the life of a temporary object passed via a function?

What is the offset in a seaplane's hull?

COUNT(*) or MAX(id) - which is faster?

How could a lack of term limits lead to a "dictatorship?"

Calculate Levenshtein distance between two strings in Python



Find the number of surjections from A to B.


Pascal's relation theorem from the book Combinatorics, R. Merris; need some help in clarificationCombinatorics: How many solns to equation? (principle of inclusion / exclusion)Get the number of subset.Comparing probabilities of drawing balls of certain color, with and without replacementDifferent ways of picking sets producing different results?Number of possibilities of permutation with repetitions with additional equal elements addedStuck trying to understand N Choose K formulaUnderstanding difference between ordered sequences with repetition and unordered sequences with repetitionIs there a relation between the triangular numbers and the combinations with repetition?A subset of three distinct positive integers, each less than 20, is selected. How many subsets will contain exactly one even number?













2












$begingroup$


Where A = {1,2,3,4,5,6} and B = {a,b,c,d,e}.



My book says it's:




  1. Select a two-element subset of A.

  2. Assign images without repetition to the two-element subset and the four
    remaining individual elements of A.


This shows that the total number of surjections from A to B is C(6, 2)5! = 1800.



I'm confused at why it's multiplied by 5! and not by 4!. Also in part 2, when we assign images, do they mean images in B?










share|cite|improve this question









$endgroup$












  • $begingroup$
    There are $5$ objects, not $4$. One object is the double, but that doesn't change anything,
    $endgroup$
    – lulu
    3 hours ago










  • $begingroup$
    I thought since we have a subset of 2, we multiply by 4! since there are 4 elements left in A.
    $endgroup$
    – Zaku
    3 hours ago






  • 1




    $begingroup$
    It's not a question of what's left in $A$. Having paired, say, $1,2$ we now need to count the surjections of ${P,3,4,5,6}$ onto ${a,b,c,d,e}$, where $P$ denotes the pair $(1,2)$. There are clearly $5!$ such surjections.
    $endgroup$
    – lulu
    3 hours ago










  • $begingroup$
    " I thought ..., we multiply by 4! since there are 4 elements left in A." But you haven't chosen which of the 5 elements that subset of 2 map to. Would it make more sense if we said the (number of ways to chose the two that aren't distinct)(choices for that pair)(choices for what is left) $={6choose 2}*5*4! $? That's actually the same thing as (number of ways to chose the two that aren't distinct)(number of choices for the four distinct and the pair)$={6choose 2}*5! $.
    $endgroup$
    – fleablood
    3 hours ago
















2












$begingroup$


Where A = {1,2,3,4,5,6} and B = {a,b,c,d,e}.



My book says it's:




  1. Select a two-element subset of A.

  2. Assign images without repetition to the two-element subset and the four
    remaining individual elements of A.


This shows that the total number of surjections from A to B is C(6, 2)5! = 1800.



I'm confused at why it's multiplied by 5! and not by 4!. Also in part 2, when we assign images, do they mean images in B?










share|cite|improve this question









$endgroup$












  • $begingroup$
    There are $5$ objects, not $4$. One object is the double, but that doesn't change anything,
    $endgroup$
    – lulu
    3 hours ago










  • $begingroup$
    I thought since we have a subset of 2, we multiply by 4! since there are 4 elements left in A.
    $endgroup$
    – Zaku
    3 hours ago






  • 1




    $begingroup$
    It's not a question of what's left in $A$. Having paired, say, $1,2$ we now need to count the surjections of ${P,3,4,5,6}$ onto ${a,b,c,d,e}$, where $P$ denotes the pair $(1,2)$. There are clearly $5!$ such surjections.
    $endgroup$
    – lulu
    3 hours ago










  • $begingroup$
    " I thought ..., we multiply by 4! since there are 4 elements left in A." But you haven't chosen which of the 5 elements that subset of 2 map to. Would it make more sense if we said the (number of ways to chose the two that aren't distinct)(choices for that pair)(choices for what is left) $={6choose 2}*5*4! $? That's actually the same thing as (number of ways to chose the two that aren't distinct)(number of choices for the four distinct and the pair)$={6choose 2}*5! $.
    $endgroup$
    – fleablood
    3 hours ago














2












2








2


2



$begingroup$


Where A = {1,2,3,4,5,6} and B = {a,b,c,d,e}.



My book says it's:




  1. Select a two-element subset of A.

  2. Assign images without repetition to the two-element subset and the four
    remaining individual elements of A.


This shows that the total number of surjections from A to B is C(6, 2)5! = 1800.



I'm confused at why it's multiplied by 5! and not by 4!. Also in part 2, when we assign images, do they mean images in B?










share|cite|improve this question









$endgroup$




Where A = {1,2,3,4,5,6} and B = {a,b,c,d,e}.



My book says it's:




  1. Select a two-element subset of A.

  2. Assign images without repetition to the two-element subset and the four
    remaining individual elements of A.


This shows that the total number of surjections from A to B is C(6, 2)5! = 1800.



I'm confused at why it's multiplied by 5! and not by 4!. Also in part 2, when we assign images, do they mean images in B?







combinatorics






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked 3 hours ago









ZakuZaku

1879




1879












  • $begingroup$
    There are $5$ objects, not $4$. One object is the double, but that doesn't change anything,
    $endgroup$
    – lulu
    3 hours ago










  • $begingroup$
    I thought since we have a subset of 2, we multiply by 4! since there are 4 elements left in A.
    $endgroup$
    – Zaku
    3 hours ago






  • 1




    $begingroup$
    It's not a question of what's left in $A$. Having paired, say, $1,2$ we now need to count the surjections of ${P,3,4,5,6}$ onto ${a,b,c,d,e}$, where $P$ denotes the pair $(1,2)$. There are clearly $5!$ such surjections.
    $endgroup$
    – lulu
    3 hours ago










  • $begingroup$
    " I thought ..., we multiply by 4! since there are 4 elements left in A." But you haven't chosen which of the 5 elements that subset of 2 map to. Would it make more sense if we said the (number of ways to chose the two that aren't distinct)(choices for that pair)(choices for what is left) $={6choose 2}*5*4! $? That's actually the same thing as (number of ways to chose the two that aren't distinct)(number of choices for the four distinct and the pair)$={6choose 2}*5! $.
    $endgroup$
    – fleablood
    3 hours ago


















  • $begingroup$
    There are $5$ objects, not $4$. One object is the double, but that doesn't change anything,
    $endgroup$
    – lulu
    3 hours ago










  • $begingroup$
    I thought since we have a subset of 2, we multiply by 4! since there are 4 elements left in A.
    $endgroup$
    – Zaku
    3 hours ago






  • 1




    $begingroup$
    It's not a question of what's left in $A$. Having paired, say, $1,2$ we now need to count the surjections of ${P,3,4,5,6}$ onto ${a,b,c,d,e}$, where $P$ denotes the pair $(1,2)$. There are clearly $5!$ such surjections.
    $endgroup$
    – lulu
    3 hours ago










  • $begingroup$
    " I thought ..., we multiply by 4! since there are 4 elements left in A." But you haven't chosen which of the 5 elements that subset of 2 map to. Would it make more sense if we said the (number of ways to chose the two that aren't distinct)(choices for that pair)(choices for what is left) $={6choose 2}*5*4! $? That's actually the same thing as (number of ways to chose the two that aren't distinct)(number of choices for the four distinct and the pair)$={6choose 2}*5! $.
    $endgroup$
    – fleablood
    3 hours ago
















$begingroup$
There are $5$ objects, not $4$. One object is the double, but that doesn't change anything,
$endgroup$
– lulu
3 hours ago




$begingroup$
There are $5$ objects, not $4$. One object is the double, but that doesn't change anything,
$endgroup$
– lulu
3 hours ago












$begingroup$
I thought since we have a subset of 2, we multiply by 4! since there are 4 elements left in A.
$endgroup$
– Zaku
3 hours ago




$begingroup$
I thought since we have a subset of 2, we multiply by 4! since there are 4 elements left in A.
$endgroup$
– Zaku
3 hours ago




1




1




$begingroup$
It's not a question of what's left in $A$. Having paired, say, $1,2$ we now need to count the surjections of ${P,3,4,5,6}$ onto ${a,b,c,d,e}$, where $P$ denotes the pair $(1,2)$. There are clearly $5!$ such surjections.
$endgroup$
– lulu
3 hours ago




$begingroup$
It's not a question of what's left in $A$. Having paired, say, $1,2$ we now need to count the surjections of ${P,3,4,5,6}$ onto ${a,b,c,d,e}$, where $P$ denotes the pair $(1,2)$. There are clearly $5!$ such surjections.
$endgroup$
– lulu
3 hours ago












$begingroup$
" I thought ..., we multiply by 4! since there are 4 elements left in A." But you haven't chosen which of the 5 elements that subset of 2 map to. Would it make more sense if we said the (number of ways to chose the two that aren't distinct)(choices for that pair)(choices for what is left) $={6choose 2}*5*4! $? That's actually the same thing as (number of ways to chose the two that aren't distinct)(number of choices for the four distinct and the pair)$={6choose 2}*5! $.
$endgroup$
– fleablood
3 hours ago




$begingroup$
" I thought ..., we multiply by 4! since there are 4 elements left in A." But you haven't chosen which of the 5 elements that subset of 2 map to. Would it make more sense if we said the (number of ways to chose the two that aren't distinct)(choices for that pair)(choices for what is left) $={6choose 2}*5*4! $? That's actually the same thing as (number of ways to chose the two that aren't distinct)(number of choices for the four distinct and the pair)$={6choose 2}*5! $.
$endgroup$
– fleablood
3 hours ago










3 Answers
3






active

oldest

votes


















2












$begingroup$

How many ways can $A$ be partitioned into $5$ blocks?



Answer: $binom{6}{2} = 15$



Given any $5text{-block}$ partition of $A$, in how many ways can the blocks be bijectively
assigned to the $5$ element set $B$?



Answer: $5! =120$



How many surjective functions from $A$ onto $B$ are there?



Answer: $15 times 120 = 1800$






share|cite|improve this answer









$endgroup$





















    2












    $begingroup$

    Think of it this way:



    There is a pair of terms that get mapped to the same element. Call that pair $alpha $. There are four terms remaining. Call them $beta,gamma,delta$ and $epsilon $.



    There are ${6choose 2} $ possible pairs that can be $alpha $.



    And we must map $alpha,beta,gamma,delta,epsilon $ to $a,b,c,d,e $. There is $5! $ ways to do that.






    share|cite|improve this answer









    $endgroup$





















      1












      $begingroup$

      Select a $2$-member $A_1subset A.$ There are $binom {6}{2}$ ways to do this. Select a $1$-member $B_1subset B.$ There are $binom {5}{1}$ ways to do this. For each pair $(A_1,B_1)$ there are $4!$ surjections $f:Ato B$ such that ${f(x):xin A_1}=B_1.$ So we get a total of $binom {6}{2}binom {5}{1}4!=(15)(5)(4!)=(15)(5!)=1800.$






      share|cite|improve this answer









      $endgroup$














        Your Answer





        StackExchange.ifUsing("editor", function () {
        return StackExchange.using("mathjaxEditing", function () {
        StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
        StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
        });
        });
        }, "mathjax-editing");

        StackExchange.ready(function() {
        var channelOptions = {
        tags: "".split(" "),
        id: "69"
        };
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function() {
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled) {
        StackExchange.using("snippets", function() {
        createEditor();
        });
        }
        else {
        createEditor();
        }
        });

        function createEditor() {
        StackExchange.prepareEditor({
        heartbeatType: 'answer',
        autoActivateHeartbeat: false,
        convertImagesToLinks: true,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: 10,
        bindNavPrevention: true,
        postfix: "",
        imageUploader: {
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        },
        noCode: true, onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        });


        }
        });














        draft saved

        draft discarded


















        StackExchange.ready(
        function () {
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3180474%2ffind-the-number-of-surjections-from-a-to-b%23new-answer', 'question_page');
        }
        );

        Post as a guest















        Required, but never shown

























        3 Answers
        3






        active

        oldest

        votes








        3 Answers
        3






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes









        2












        $begingroup$

        How many ways can $A$ be partitioned into $5$ blocks?



        Answer: $binom{6}{2} = 15$



        Given any $5text{-block}$ partition of $A$, in how many ways can the blocks be bijectively
        assigned to the $5$ element set $B$?



        Answer: $5! =120$



        How many surjective functions from $A$ onto $B$ are there?



        Answer: $15 times 120 = 1800$






        share|cite|improve this answer









        $endgroup$


















          2












          $begingroup$

          How many ways can $A$ be partitioned into $5$ blocks?



          Answer: $binom{6}{2} = 15$



          Given any $5text{-block}$ partition of $A$, in how many ways can the blocks be bijectively
          assigned to the $5$ element set $B$?



          Answer: $5! =120$



          How many surjective functions from $A$ onto $B$ are there?



          Answer: $15 times 120 = 1800$






          share|cite|improve this answer









          $endgroup$
















            2












            2








            2





            $begingroup$

            How many ways can $A$ be partitioned into $5$ blocks?



            Answer: $binom{6}{2} = 15$



            Given any $5text{-block}$ partition of $A$, in how many ways can the blocks be bijectively
            assigned to the $5$ element set $B$?



            Answer: $5! =120$



            How many surjective functions from $A$ onto $B$ are there?



            Answer: $15 times 120 = 1800$






            share|cite|improve this answer









            $endgroup$



            How many ways can $A$ be partitioned into $5$ blocks?



            Answer: $binom{6}{2} = 15$



            Given any $5text{-block}$ partition of $A$, in how many ways can the blocks be bijectively
            assigned to the $5$ element set $B$?



            Answer: $5! =120$



            How many surjective functions from $A$ onto $B$ are there?



            Answer: $15 times 120 = 1800$







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered 3 hours ago









            CopyPasteItCopyPasteIt

            4,3271828




            4,3271828























                2












                $begingroup$

                Think of it this way:



                There is a pair of terms that get mapped to the same element. Call that pair $alpha $. There are four terms remaining. Call them $beta,gamma,delta$ and $epsilon $.



                There are ${6choose 2} $ possible pairs that can be $alpha $.



                And we must map $alpha,beta,gamma,delta,epsilon $ to $a,b,c,d,e $. There is $5! $ ways to do that.






                share|cite|improve this answer









                $endgroup$


















                  2












                  $begingroup$

                  Think of it this way:



                  There is a pair of terms that get mapped to the same element. Call that pair $alpha $. There are four terms remaining. Call them $beta,gamma,delta$ and $epsilon $.



                  There are ${6choose 2} $ possible pairs that can be $alpha $.



                  And we must map $alpha,beta,gamma,delta,epsilon $ to $a,b,c,d,e $. There is $5! $ ways to do that.






                  share|cite|improve this answer









                  $endgroup$
















                    2












                    2








                    2





                    $begingroup$

                    Think of it this way:



                    There is a pair of terms that get mapped to the same element. Call that pair $alpha $. There are four terms remaining. Call them $beta,gamma,delta$ and $epsilon $.



                    There are ${6choose 2} $ possible pairs that can be $alpha $.



                    And we must map $alpha,beta,gamma,delta,epsilon $ to $a,b,c,d,e $. There is $5! $ ways to do that.






                    share|cite|improve this answer









                    $endgroup$



                    Think of it this way:



                    There is a pair of terms that get mapped to the same element. Call that pair $alpha $. There are four terms remaining. Call them $beta,gamma,delta$ and $epsilon $.



                    There are ${6choose 2} $ possible pairs that can be $alpha $.



                    And we must map $alpha,beta,gamma,delta,epsilon $ to $a,b,c,d,e $. There is $5! $ ways to do that.







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered 3 hours ago









                    fleabloodfleablood

                    73.9k22891




                    73.9k22891























                        1












                        $begingroup$

                        Select a $2$-member $A_1subset A.$ There are $binom {6}{2}$ ways to do this. Select a $1$-member $B_1subset B.$ There are $binom {5}{1}$ ways to do this. For each pair $(A_1,B_1)$ there are $4!$ surjections $f:Ato B$ such that ${f(x):xin A_1}=B_1.$ So we get a total of $binom {6}{2}binom {5}{1}4!=(15)(5)(4!)=(15)(5!)=1800.$






                        share|cite|improve this answer









                        $endgroup$


















                          1












                          $begingroup$

                          Select a $2$-member $A_1subset A.$ There are $binom {6}{2}$ ways to do this. Select a $1$-member $B_1subset B.$ There are $binom {5}{1}$ ways to do this. For each pair $(A_1,B_1)$ there are $4!$ surjections $f:Ato B$ such that ${f(x):xin A_1}=B_1.$ So we get a total of $binom {6}{2}binom {5}{1}4!=(15)(5)(4!)=(15)(5!)=1800.$






                          share|cite|improve this answer









                          $endgroup$
















                            1












                            1








                            1





                            $begingroup$

                            Select a $2$-member $A_1subset A.$ There are $binom {6}{2}$ ways to do this. Select a $1$-member $B_1subset B.$ There are $binom {5}{1}$ ways to do this. For each pair $(A_1,B_1)$ there are $4!$ surjections $f:Ato B$ such that ${f(x):xin A_1}=B_1.$ So we get a total of $binom {6}{2}binom {5}{1}4!=(15)(5)(4!)=(15)(5!)=1800.$






                            share|cite|improve this answer









                            $endgroup$



                            Select a $2$-member $A_1subset A.$ There are $binom {6}{2}$ ways to do this. Select a $1$-member $B_1subset B.$ There are $binom {5}{1}$ ways to do this. For each pair $(A_1,B_1)$ there are $4!$ surjections $f:Ato B$ such that ${f(x):xin A_1}=B_1.$ So we get a total of $binom {6}{2}binom {5}{1}4!=(15)(5)(4!)=(15)(5!)=1800.$







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered 16 mins ago









                            DanielWainfleetDanielWainfleet

                            35.8k31648




                            35.8k31648






























                                draft saved

                                draft discarded




















































                                Thanks for contributing an answer to Mathematics Stack Exchange!


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid



                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.


                                Use MathJax to format equations. MathJax reference.


                                To learn more, see our tips on writing great answers.




                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function () {
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3180474%2ffind-the-number-of-surjections-from-a-to-b%23new-answer', 'question_page');
                                }
                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Popular posts from this blog

                                Gersau Kjelder | Navigasjonsmeny46°59′0″N 8°31′0″E46°59′0″N...

                                Hestehale Innhaldsliste Hestehale på kvinner | Hestehale på menn | Galleri | Sjå òg |...

                                What is the “three and three hundred thousand syndrome”?Who wrote the book Arena?What five creatures were...