Holes in ElementMesh with ToElementMesh of ImplicitRegion Announcing the arrival of Valued...

Additive group of local rings

Is accepting an invalid credit card number a security issue?

Can you stand up from being prone using Skirmisher outside of your turn?

How to translate "red flag" into Spanish?

Bayes factor vs P value

What is this word supposed to be?

Does Mathematica have an implementation of the Poisson binomial distribution?

Multiple options vs single option UI

"Rubric" as meaning "signature" or "personal mark" -- is this accepted usage?

Is Bran literally the world's memory?

Prove the alternating sum of a decreasing sequence converging to 0 is Cauchy.

What to do with someone that cheated their way through university and a PhD program?

What is /etc/mtab in Linux?

How to keep bees out of canned beverages?

Passing args from the bash script to the function in the script

How to not starve gigantic beasts

Holes in ElementMesh with ToElementMesh of ImplicitRegion

A strange hotel

Flattening the sub-lists

Are there moral objections to a life motivated purely by money? How to sway a person from this lifestyle?

Multiple fireplaces in an apartment building?

Would reducing the reference voltage of an ADC have any effect on accuracy?

What is the least dense liquid under normal conditions?

Why do games have consumables?



Holes in ElementMesh with ToElementMesh of ImplicitRegion



Announcing the arrival of Valued Associate #679: Cesar Manara
Unicorn Meta Zoo #1: Why another podcast?ElementMesh from ImplicitRegion cuts corners of regionLong running ToElementMesh with very “large” domainsProblem with MeshOrderAlteration to create a 2nd order ElementMeshToElementMesh[]3D FEM with holesElementMesh (rendering?) issueMaking good meshesElementMesh from Tetrahedron subdivisionElementMesh from ImplicitRegion cuts corners of regionToElementMesh of Region with HoleUneven distribution of nodes by ToElementMesh[]












5












$begingroup$


I am trying to plot a function in a region below a level curve of the function and within a cell. I have been doing this by calculating an ElementMesh using ImplicitRegion and ToElementMesh, but the result has holes.



Here is the cell (it's just a square),



cell = Parallelogram[{-0.5`, -0.5`}, {{1.`, 0.`}, {0.`, 1.`}}];
Graphics[{Transparent, EdgeForm[Thick], cell}]


and the function,



f[kx_, ky_, n_] := 
Sort[Eigenvalues[{{(-1. + kx)^2 + (-1. + ky)^2, -0.23, 0., -0.23,
0.12, 0., 0., 0.,
0.}, {-0.23, (-1. + kx)^2 + (0. + ky)^2, -0.23, 0.12, -0.23,
0.12, 0., 0., 0.}, {0., -0.23, (-1. + kx)^2 + (1. + ky)^2, 0.,
0.12, -0.23, 0., 0., 0.}, {-0.23, 0.12,
0., (0. + kx)^2 + (-1. + ky)^2, -0.23, 0., -0.23, 0.12,
0.}, {0.12, -0.23,
0.12, -0.23, (0. + kx)^2 + (0. + ky)^2, -0.23, 0.12, -0.23,
0.12}, {0., 0.12, -0.23, 0., -0.23, (0. + kx)^2 + (1. + ky)^2,
0., 0.12, -0.23}, {0., 0., 0., -0.23, 0.12,
0., (1. + kx)^2 + (-1. + ky)^2, -0.23, 0.}, {0., 0., 0.,
0.12, -0.23,
0.12, -0.23, (1. + kx)^2 + (0. + ky)^2, -0.23}, {0., 0., 0.,
0., 0.12, -0.23, 0., -0.23, (1. + kx)^2 + (1. + ky)^2}}]][[
n]];
Plot3D[f[x, y, 4], {x, y} [Element] cell, PlotPoints -> 50]


enter image description here



and what the region should look like,



isovalue = 1.29897233417072;
ContourPlot[f[x, y, 4], {x, y} [Element] cell,
Contours -> {isovalue}, ColorFunction -> GrayLevel,
PlotPoints -> 100]


enter image description here



This is what I have tried



reg = ToElementMesh[
ImplicitRegion[
f[x, y, 4] < isovalue && {x, y} [Element] cell, {x, y}],
"MaxBoundaryCellMeasure" -> 0.01, MeshQualityGoal -> 1,
PerformanceGoal -> "Quality", MaxCellMeasure -> 0.01,
"BoundaryMeshGenerator" -> "Continuation"];
RegionPlot[reg]


enter image description here
The region is no more accurate when I decrease MaxCellMeasure or MaxBoundaryCellMeasure. I also tried the solution suggested here.










share|improve this question











$endgroup$

















    5












    $begingroup$


    I am trying to plot a function in a region below a level curve of the function and within a cell. I have been doing this by calculating an ElementMesh using ImplicitRegion and ToElementMesh, but the result has holes.



    Here is the cell (it's just a square),



    cell = Parallelogram[{-0.5`, -0.5`}, {{1.`, 0.`}, {0.`, 1.`}}];
    Graphics[{Transparent, EdgeForm[Thick], cell}]


    and the function,



    f[kx_, ky_, n_] := 
    Sort[Eigenvalues[{{(-1. + kx)^2 + (-1. + ky)^2, -0.23, 0., -0.23,
    0.12, 0., 0., 0.,
    0.}, {-0.23, (-1. + kx)^2 + (0. + ky)^2, -0.23, 0.12, -0.23,
    0.12, 0., 0., 0.}, {0., -0.23, (-1. + kx)^2 + (1. + ky)^2, 0.,
    0.12, -0.23, 0., 0., 0.}, {-0.23, 0.12,
    0., (0. + kx)^2 + (-1. + ky)^2, -0.23, 0., -0.23, 0.12,
    0.}, {0.12, -0.23,
    0.12, -0.23, (0. + kx)^2 + (0. + ky)^2, -0.23, 0.12, -0.23,
    0.12}, {0., 0.12, -0.23, 0., -0.23, (0. + kx)^2 + (1. + ky)^2,
    0., 0.12, -0.23}, {0., 0., 0., -0.23, 0.12,
    0., (1. + kx)^2 + (-1. + ky)^2, -0.23, 0.}, {0., 0., 0.,
    0.12, -0.23,
    0.12, -0.23, (1. + kx)^2 + (0. + ky)^2, -0.23}, {0., 0., 0.,
    0., 0.12, -0.23, 0., -0.23, (1. + kx)^2 + (1. + ky)^2}}]][[
    n]];
    Plot3D[f[x, y, 4], {x, y} [Element] cell, PlotPoints -> 50]


    enter image description here



    and what the region should look like,



    isovalue = 1.29897233417072;
    ContourPlot[f[x, y, 4], {x, y} [Element] cell,
    Contours -> {isovalue}, ColorFunction -> GrayLevel,
    PlotPoints -> 100]


    enter image description here



    This is what I have tried



    reg = ToElementMesh[
    ImplicitRegion[
    f[x, y, 4] < isovalue && {x, y} [Element] cell, {x, y}],
    "MaxBoundaryCellMeasure" -> 0.01, MeshQualityGoal -> 1,
    PerformanceGoal -> "Quality", MaxCellMeasure -> 0.01,
    "BoundaryMeshGenerator" -> "Continuation"];
    RegionPlot[reg]


    enter image description here
    The region is no more accurate when I decrease MaxCellMeasure or MaxBoundaryCellMeasure. I also tried the solution suggested here.










    share|improve this question











    $endgroup$















      5












      5








      5





      $begingroup$


      I am trying to plot a function in a region below a level curve of the function and within a cell. I have been doing this by calculating an ElementMesh using ImplicitRegion and ToElementMesh, but the result has holes.



      Here is the cell (it's just a square),



      cell = Parallelogram[{-0.5`, -0.5`}, {{1.`, 0.`}, {0.`, 1.`}}];
      Graphics[{Transparent, EdgeForm[Thick], cell}]


      and the function,



      f[kx_, ky_, n_] := 
      Sort[Eigenvalues[{{(-1. + kx)^2 + (-1. + ky)^2, -0.23, 0., -0.23,
      0.12, 0., 0., 0.,
      0.}, {-0.23, (-1. + kx)^2 + (0. + ky)^2, -0.23, 0.12, -0.23,
      0.12, 0., 0., 0.}, {0., -0.23, (-1. + kx)^2 + (1. + ky)^2, 0.,
      0.12, -0.23, 0., 0., 0.}, {-0.23, 0.12,
      0., (0. + kx)^2 + (-1. + ky)^2, -0.23, 0., -0.23, 0.12,
      0.}, {0.12, -0.23,
      0.12, -0.23, (0. + kx)^2 + (0. + ky)^2, -0.23, 0.12, -0.23,
      0.12}, {0., 0.12, -0.23, 0., -0.23, (0. + kx)^2 + (1. + ky)^2,
      0., 0.12, -0.23}, {0., 0., 0., -0.23, 0.12,
      0., (1. + kx)^2 + (-1. + ky)^2, -0.23, 0.}, {0., 0., 0.,
      0.12, -0.23,
      0.12, -0.23, (1. + kx)^2 + (0. + ky)^2, -0.23}, {0., 0., 0.,
      0., 0.12, -0.23, 0., -0.23, (1. + kx)^2 + (1. + ky)^2}}]][[
      n]];
      Plot3D[f[x, y, 4], {x, y} [Element] cell, PlotPoints -> 50]


      enter image description here



      and what the region should look like,



      isovalue = 1.29897233417072;
      ContourPlot[f[x, y, 4], {x, y} [Element] cell,
      Contours -> {isovalue}, ColorFunction -> GrayLevel,
      PlotPoints -> 100]


      enter image description here



      This is what I have tried



      reg = ToElementMesh[
      ImplicitRegion[
      f[x, y, 4] < isovalue && {x, y} [Element] cell, {x, y}],
      "MaxBoundaryCellMeasure" -> 0.01, MeshQualityGoal -> 1,
      PerformanceGoal -> "Quality", MaxCellMeasure -> 0.01,
      "BoundaryMeshGenerator" -> "Continuation"];
      RegionPlot[reg]


      enter image description here
      The region is no more accurate when I decrease MaxCellMeasure or MaxBoundaryCellMeasure. I also tried the solution suggested here.










      share|improve this question











      $endgroup$




      I am trying to plot a function in a region below a level curve of the function and within a cell. I have been doing this by calculating an ElementMesh using ImplicitRegion and ToElementMesh, but the result has holes.



      Here is the cell (it's just a square),



      cell = Parallelogram[{-0.5`, -0.5`}, {{1.`, 0.`}, {0.`, 1.`}}];
      Graphics[{Transparent, EdgeForm[Thick], cell}]


      and the function,



      f[kx_, ky_, n_] := 
      Sort[Eigenvalues[{{(-1. + kx)^2 + (-1. + ky)^2, -0.23, 0., -0.23,
      0.12, 0., 0., 0.,
      0.}, {-0.23, (-1. + kx)^2 + (0. + ky)^2, -0.23, 0.12, -0.23,
      0.12, 0., 0., 0.}, {0., -0.23, (-1. + kx)^2 + (1. + ky)^2, 0.,
      0.12, -0.23, 0., 0., 0.}, {-0.23, 0.12,
      0., (0. + kx)^2 + (-1. + ky)^2, -0.23, 0., -0.23, 0.12,
      0.}, {0.12, -0.23,
      0.12, -0.23, (0. + kx)^2 + (0. + ky)^2, -0.23, 0.12, -0.23,
      0.12}, {0., 0.12, -0.23, 0., -0.23, (0. + kx)^2 + (1. + ky)^2,
      0., 0.12, -0.23}, {0., 0., 0., -0.23, 0.12,
      0., (1. + kx)^2 + (-1. + ky)^2, -0.23, 0.}, {0., 0., 0.,
      0.12, -0.23,
      0.12, -0.23, (1. + kx)^2 + (0. + ky)^2, -0.23}, {0., 0., 0.,
      0., 0.12, -0.23, 0., -0.23, (1. + kx)^2 + (1. + ky)^2}}]][[
      n]];
      Plot3D[f[x, y, 4], {x, y} [Element] cell, PlotPoints -> 50]


      enter image description here



      and what the region should look like,



      isovalue = 1.29897233417072;
      ContourPlot[f[x, y, 4], {x, y} [Element] cell,
      Contours -> {isovalue}, ColorFunction -> GrayLevel,
      PlotPoints -> 100]


      enter image description here



      This is what I have tried



      reg = ToElementMesh[
      ImplicitRegion[
      f[x, y, 4] < isovalue && {x, y} [Element] cell, {x, y}],
      "MaxBoundaryCellMeasure" -> 0.01, MeshQualityGoal -> 1,
      PerformanceGoal -> "Quality", MaxCellMeasure -> 0.01,
      "BoundaryMeshGenerator" -> "Continuation"];
      RegionPlot[reg]


      enter image description here
      The region is no more accurate when I decrease MaxCellMeasure or MaxBoundaryCellMeasure. I also tried the solution suggested here.







      plotting finite-element-method mesh implicit






      share|improve this question















      share|improve this question













      share|improve this question




      share|improve this question








      edited 1 hour ago









      user21

      21.2k55999




      21.2k55999










      asked 9 hours ago









      jerjorgjerjorg

      974




      974






















          2 Answers
          2






          active

          oldest

          votes


















          5












          $begingroup$

          I hope I interpreted your question correctly that you want a more accurate ElementMesh representation of the region.



          First we create a high quality Graphics of the region of interest.



          isovalue = 1.29897233417072;
          (* Add some margins to plot range to get connected region. *)
          tolerance = 0.05;
          plot = ContourPlot[
          f[x, y, 4],
          {x, y} ∈ Cuboid[{-0.5, -0.5} - tolerance, {0.5, 0.5} + tolerance],
          Contours -> {isovalue},
          ColorFunction -> GrayLevel,
          (* We need high quality plot for ImageMesh later. *)
          PlotPoints -> 200,
          Frame -> None
          ]


          Create MeshRegion from Graphics object.



          mreg = ImageMesh[ColorNegate[plot]]


          And convert it to ElementMesh.



          Needs["NDSolve`FEM`"]
          mesh = ToElementMesh[mreg,"MeshOrder"->1]
          (* ElementMesh[{{7., 353.}, {7., 353.}}, {TriangleElement["<" 1057 ">"]}] *)

          mesh["Wireframe"]


          mesh






          share|improve this answer









          $endgroup$





















            5












            $begingroup$

            Another approach is:



            reg = ToElementMesh[
            ImplicitRegion[
            f[x, y, 4] < isovalue && {x, y} [Element] cell, {x, y}],
            "MaxBoundaryCellMeasure" -> 0.01, MeshQualityGoal -> 1,
            PerformanceGoal -> "Quality", MaxCellMeasure -> 0.01,
            "BoundaryMeshGenerator" -> {"RegionPlot", "SamplePoints" -> 41}];

            reg["Wireframe"]


            enter image description here



            One thing to be a bit careful about is the question if the holes intersect the boundary. From the mesh it does not look like it but the math might say it.






            share|improve this answer









            $endgroup$














              Your Answer








              StackExchange.ready(function() {
              var channelOptions = {
              tags: "".split(" "),
              id: "387"
              };
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function() {
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled) {
              StackExchange.using("snippets", function() {
              createEditor();
              });
              }
              else {
              createEditor();
              }
              });

              function createEditor() {
              StackExchange.prepareEditor({
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: false,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: null,
              bindNavPrevention: true,
              postfix: "",
              imageUploader: {
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              },
              onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              });


              }
              });














              draft saved

              draft discarded


















              StackExchange.ready(
              function () {
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f196970%2fholes-in-elementmesh-with-toelementmesh-of-implicitregion%23new-answer', 'question_page');
              }
              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              5












              $begingroup$

              I hope I interpreted your question correctly that you want a more accurate ElementMesh representation of the region.



              First we create a high quality Graphics of the region of interest.



              isovalue = 1.29897233417072;
              (* Add some margins to plot range to get connected region. *)
              tolerance = 0.05;
              plot = ContourPlot[
              f[x, y, 4],
              {x, y} ∈ Cuboid[{-0.5, -0.5} - tolerance, {0.5, 0.5} + tolerance],
              Contours -> {isovalue},
              ColorFunction -> GrayLevel,
              (* We need high quality plot for ImageMesh later. *)
              PlotPoints -> 200,
              Frame -> None
              ]


              Create MeshRegion from Graphics object.



              mreg = ImageMesh[ColorNegate[plot]]


              And convert it to ElementMesh.



              Needs["NDSolve`FEM`"]
              mesh = ToElementMesh[mreg,"MeshOrder"->1]
              (* ElementMesh[{{7., 353.}, {7., 353.}}, {TriangleElement["<" 1057 ">"]}] *)

              mesh["Wireframe"]


              mesh






              share|improve this answer









              $endgroup$


















                5












                $begingroup$

                I hope I interpreted your question correctly that you want a more accurate ElementMesh representation of the region.



                First we create a high quality Graphics of the region of interest.



                isovalue = 1.29897233417072;
                (* Add some margins to plot range to get connected region. *)
                tolerance = 0.05;
                plot = ContourPlot[
                f[x, y, 4],
                {x, y} ∈ Cuboid[{-0.5, -0.5} - tolerance, {0.5, 0.5} + tolerance],
                Contours -> {isovalue},
                ColorFunction -> GrayLevel,
                (* We need high quality plot for ImageMesh later. *)
                PlotPoints -> 200,
                Frame -> None
                ]


                Create MeshRegion from Graphics object.



                mreg = ImageMesh[ColorNegate[plot]]


                And convert it to ElementMesh.



                Needs["NDSolve`FEM`"]
                mesh = ToElementMesh[mreg,"MeshOrder"->1]
                (* ElementMesh[{{7., 353.}, {7., 353.}}, {TriangleElement["<" 1057 ">"]}] *)

                mesh["Wireframe"]


                mesh






                share|improve this answer









                $endgroup$
















                  5












                  5








                  5





                  $begingroup$

                  I hope I interpreted your question correctly that you want a more accurate ElementMesh representation of the region.



                  First we create a high quality Graphics of the region of interest.



                  isovalue = 1.29897233417072;
                  (* Add some margins to plot range to get connected region. *)
                  tolerance = 0.05;
                  plot = ContourPlot[
                  f[x, y, 4],
                  {x, y} ∈ Cuboid[{-0.5, -0.5} - tolerance, {0.5, 0.5} + tolerance],
                  Contours -> {isovalue},
                  ColorFunction -> GrayLevel,
                  (* We need high quality plot for ImageMesh later. *)
                  PlotPoints -> 200,
                  Frame -> None
                  ]


                  Create MeshRegion from Graphics object.



                  mreg = ImageMesh[ColorNegate[plot]]


                  And convert it to ElementMesh.



                  Needs["NDSolve`FEM`"]
                  mesh = ToElementMesh[mreg,"MeshOrder"->1]
                  (* ElementMesh[{{7., 353.}, {7., 353.}}, {TriangleElement["<" 1057 ">"]}] *)

                  mesh["Wireframe"]


                  mesh






                  share|improve this answer









                  $endgroup$



                  I hope I interpreted your question correctly that you want a more accurate ElementMesh representation of the region.



                  First we create a high quality Graphics of the region of interest.



                  isovalue = 1.29897233417072;
                  (* Add some margins to plot range to get connected region. *)
                  tolerance = 0.05;
                  plot = ContourPlot[
                  f[x, y, 4],
                  {x, y} ∈ Cuboid[{-0.5, -0.5} - tolerance, {0.5, 0.5} + tolerance],
                  Contours -> {isovalue},
                  ColorFunction -> GrayLevel,
                  (* We need high quality plot for ImageMesh later. *)
                  PlotPoints -> 200,
                  Frame -> None
                  ]


                  Create MeshRegion from Graphics object.



                  mreg = ImageMesh[ColorNegate[plot]]


                  And convert it to ElementMesh.



                  Needs["NDSolve`FEM`"]
                  mesh = ToElementMesh[mreg,"MeshOrder"->1]
                  (* ElementMesh[{{7., 353.}, {7., 353.}}, {TriangleElement["<" 1057 ">"]}] *)

                  mesh["Wireframe"]


                  mesh







                  share|improve this answer












                  share|improve this answer



                  share|improve this answer










                  answered 1 hour ago









                  PintiPinti

                  3,97211037




                  3,97211037























                      5












                      $begingroup$

                      Another approach is:



                      reg = ToElementMesh[
                      ImplicitRegion[
                      f[x, y, 4] < isovalue && {x, y} [Element] cell, {x, y}],
                      "MaxBoundaryCellMeasure" -> 0.01, MeshQualityGoal -> 1,
                      PerformanceGoal -> "Quality", MaxCellMeasure -> 0.01,
                      "BoundaryMeshGenerator" -> {"RegionPlot", "SamplePoints" -> 41}];

                      reg["Wireframe"]


                      enter image description here



                      One thing to be a bit careful about is the question if the holes intersect the boundary. From the mesh it does not look like it but the math might say it.






                      share|improve this answer









                      $endgroup$


















                        5












                        $begingroup$

                        Another approach is:



                        reg = ToElementMesh[
                        ImplicitRegion[
                        f[x, y, 4] < isovalue && {x, y} [Element] cell, {x, y}],
                        "MaxBoundaryCellMeasure" -> 0.01, MeshQualityGoal -> 1,
                        PerformanceGoal -> "Quality", MaxCellMeasure -> 0.01,
                        "BoundaryMeshGenerator" -> {"RegionPlot", "SamplePoints" -> 41}];

                        reg["Wireframe"]


                        enter image description here



                        One thing to be a bit careful about is the question if the holes intersect the boundary. From the mesh it does not look like it but the math might say it.






                        share|improve this answer









                        $endgroup$
















                          5












                          5








                          5





                          $begingroup$

                          Another approach is:



                          reg = ToElementMesh[
                          ImplicitRegion[
                          f[x, y, 4] < isovalue && {x, y} [Element] cell, {x, y}],
                          "MaxBoundaryCellMeasure" -> 0.01, MeshQualityGoal -> 1,
                          PerformanceGoal -> "Quality", MaxCellMeasure -> 0.01,
                          "BoundaryMeshGenerator" -> {"RegionPlot", "SamplePoints" -> 41}];

                          reg["Wireframe"]


                          enter image description here



                          One thing to be a bit careful about is the question if the holes intersect the boundary. From the mesh it does not look like it but the math might say it.






                          share|improve this answer









                          $endgroup$



                          Another approach is:



                          reg = ToElementMesh[
                          ImplicitRegion[
                          f[x, y, 4] < isovalue && {x, y} [Element] cell, {x, y}],
                          "MaxBoundaryCellMeasure" -> 0.01, MeshQualityGoal -> 1,
                          PerformanceGoal -> "Quality", MaxCellMeasure -> 0.01,
                          "BoundaryMeshGenerator" -> {"RegionPlot", "SamplePoints" -> 41}];

                          reg["Wireframe"]


                          enter image description here



                          One thing to be a bit careful about is the question if the holes intersect the boundary. From the mesh it does not look like it but the math might say it.







                          share|improve this answer












                          share|improve this answer



                          share|improve this answer










                          answered 1 hour ago









                          user21user21

                          21.2k55999




                          21.2k55999






























                              draft saved

                              draft discarded




















































                              Thanks for contributing an answer to Mathematica Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function () {
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f196970%2fholes-in-elementmesh-with-toelementmesh-of-implicitregion%23new-answer', 'question_page');
                              }
                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              Gersau Kjelder | Navigasjonsmeny46°59′0″N 8°31′0″E46°59′0″N...

                              Hestehale Innhaldsliste Hestehale på kvinner | Hestehale på menn | Galleri | Sjå òg |...

                              What is the “three and three hundred thousand syndrome”?Who wrote the book Arena?What five creatures were...