How did people program for Consoles with multiple CPUs? The Next CEO of Stack OverflowHow were...

Why here is plural "We went to the movies last night."

Natural language into sentence logic

If the heap is initialized for security, then why is the stack uninitialized?

Increase performance creating Mandelbrot set in python

What can we do to stop prior company from asking us questions?

Go Pregnant or Go Home

How do spells that require an ability check vs. the caster's spell save DC work?

How to write the block matrix in LaTex?

Horror movie/show or scene where a horse creature opens its mouth really wide and devours a man in a stables

What does this shorthand mean?

Which organization defines CJK Unified Ideographs?

Trouble understanding the speech of overseas colleagues

Is it safe to use c_str() on a temporary string?

How to safely derail a train during transit?

How do I construct this japanese bowl?

If I blow insulation everywhere in my attic except the door trap, will heat escape through it?

Unreliable Magic - Is it worth it?

Why does C# sound extremely flat when saxophone is tuned to G?

Opposite of a diet

How do scammers retract money, while you can’t?

When airplanes disconnect from a tanker during air to air refueling, why do they bank so sharply to the right?

Science fiction (dystopian) short story set after WWIII

Why didn't Khan get resurrected in the Genesis Explosion?

Was a professor correct to chastise me for writing "Prof. X" rather than "Professor X"?



How did people program for Consoles with multiple CPUs?



The Next CEO of Stack OverflowHow were analytics gathered on software built for retrocomputing platforms?Did Apple not originally allow anyone to develop software for the Macintosh?How did software engineers test their code in 19xx?Did any major corporation ever successfully sue Microsoft for intellectual property theft?Instruction set support for multiplication with a constantBack in the late 1980s, how was commercial software for 8-bit home computers developed?Why did some CPUs use two Read/Write lines, and others just one?












4















I'm specifically interested in the Sega Mega Drive/Genesis, which used a 68000 CPU, but also a Z80, mainly used to control the sound hardware and provide backward compatibility with the Master System.



There was also the Atari Jaguar, with it's Tom and Jerry RISC chips, the Sega Saturn, Featuring a total of eight processors, and probably a lot more.



When writing code (assuming ASM), how would these additional processors be used/accessed? Did one write regular 68000 code (even for sound) and the 68000 itself handled talking to the Z80? Did one need to write two different programs, one for each CPU? If yes, how did they communicate with each other? Or is memory mapping used, which would require a binary that has both 68000 and Z80 instructions in them, making sure that the Z80 code is in a specific memory region?



(This isn't about "regular" multi-processing, like on newer consoles with multi-core CPUs that are all the same. This is about consoles with a main CPU and specialized co-processors for e.g., Sound. Basically, the Sega Genesis, though I'm looking at building my own custom system, so I'm more interested in the basic principles.)










share|improve this question







New contributor




Michael Stum is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





















  • "CPU" probably isn't the best term here, though I'm not certain what the idiomatic one of the time is; while you could have a 68k and a Z80, it was also common to see more specialized support chips. The general concept is called asymmetric multiprocessing.

    – chrylis
    23 mins ago


















4















I'm specifically interested in the Sega Mega Drive/Genesis, which used a 68000 CPU, but also a Z80, mainly used to control the sound hardware and provide backward compatibility with the Master System.



There was also the Atari Jaguar, with it's Tom and Jerry RISC chips, the Sega Saturn, Featuring a total of eight processors, and probably a lot more.



When writing code (assuming ASM), how would these additional processors be used/accessed? Did one write regular 68000 code (even for sound) and the 68000 itself handled talking to the Z80? Did one need to write two different programs, one for each CPU? If yes, how did they communicate with each other? Or is memory mapping used, which would require a binary that has both 68000 and Z80 instructions in them, making sure that the Z80 code is in a specific memory region?



(This isn't about "regular" multi-processing, like on newer consoles with multi-core CPUs that are all the same. This is about consoles with a main CPU and specialized co-processors for e.g., Sound. Basically, the Sega Genesis, though I'm looking at building my own custom system, so I'm more interested in the basic principles.)










share|improve this question







New contributor




Michael Stum is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





















  • "CPU" probably isn't the best term here, though I'm not certain what the idiomatic one of the time is; while you could have a 68k and a Z80, it was also common to see more specialized support chips. The general concept is called asymmetric multiprocessing.

    – chrylis
    23 mins ago
















4












4








4








I'm specifically interested in the Sega Mega Drive/Genesis, which used a 68000 CPU, but also a Z80, mainly used to control the sound hardware and provide backward compatibility with the Master System.



There was also the Atari Jaguar, with it's Tom and Jerry RISC chips, the Sega Saturn, Featuring a total of eight processors, and probably a lot more.



When writing code (assuming ASM), how would these additional processors be used/accessed? Did one write regular 68000 code (even for sound) and the 68000 itself handled talking to the Z80? Did one need to write two different programs, one for each CPU? If yes, how did they communicate with each other? Or is memory mapping used, which would require a binary that has both 68000 and Z80 instructions in them, making sure that the Z80 code is in a specific memory region?



(This isn't about "regular" multi-processing, like on newer consoles with multi-core CPUs that are all the same. This is about consoles with a main CPU and specialized co-processors for e.g., Sound. Basically, the Sega Genesis, though I'm looking at building my own custom system, so I'm more interested in the basic principles.)










share|improve this question







New contributor




Michael Stum is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.












I'm specifically interested in the Sega Mega Drive/Genesis, which used a 68000 CPU, but also a Z80, mainly used to control the sound hardware and provide backward compatibility with the Master System.



There was also the Atari Jaguar, with it's Tom and Jerry RISC chips, the Sega Saturn, Featuring a total of eight processors, and probably a lot more.



When writing code (assuming ASM), how would these additional processors be used/accessed? Did one write regular 68000 code (even for sound) and the 68000 itself handled talking to the Z80? Did one need to write two different programs, one for each CPU? If yes, how did they communicate with each other? Or is memory mapping used, which would require a binary that has both 68000 and Z80 instructions in them, making sure that the Z80 code is in a specific memory region?



(This isn't about "regular" multi-processing, like on newer consoles with multi-core CPUs that are all the same. This is about consoles with a main CPU and specialized co-processors for e.g., Sound. Basically, the Sega Genesis, though I'm looking at building my own custom system, so I'm more interested in the basic principles.)







software-development cpu sega-genesis






share|improve this question







New contributor




Michael Stum is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|improve this question







New contributor




Michael Stum is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|improve this question




share|improve this question






New contributor




Michael Stum is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked 3 hours ago









Michael StumMichael Stum

1213




1213




New contributor




Michael Stum is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





Michael Stum is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






Michael Stum is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.













  • "CPU" probably isn't the best term here, though I'm not certain what the idiomatic one of the time is; while you could have a 68k and a Z80, it was also common to see more specialized support chips. The general concept is called asymmetric multiprocessing.

    – chrylis
    23 mins ago





















  • "CPU" probably isn't the best term here, though I'm not certain what the idiomatic one of the time is; while you could have a 68k and a Z80, it was also common to see more specialized support chips. The general concept is called asymmetric multiprocessing.

    – chrylis
    23 mins ago



















"CPU" probably isn't the best term here, though I'm not certain what the idiomatic one of the time is; while you could have a 68k and a Z80, it was also common to see more specialized support chips. The general concept is called asymmetric multiprocessing.

– chrylis
23 mins ago







"CPU" probably isn't the best term here, though I'm not certain what the idiomatic one of the time is; while you could have a 68k and a Z80, it was also common to see more specialized support chips. The general concept is called asymmetric multiprocessing.

– chrylis
23 mins ago












1 Answer
1






active

oldest

votes


















4














It varies machine to machine; at the simplest end is the Neo Geo — its 68000 and Z80 have completely independent buses. You write one program for the 68000 and one for the Z80 and a single pipe of communication joins the two: post a byte to the Z80 and it'll trigger an NMI; the Z80 can read the command byte from a certain port and write a response to another, the 68000 can poll for the response. Neo Geo also supplied a sample set of Z80 code so you could just treat it as an advanced sound generator and not worry about the implementation if you prefer.



The Mega Drive has a more complicated system of shared buses; the Z80 has some memory on a private bus but the cartridge bus is a shared resource and I think the Z80 can also share some RAM. In that system the VDP can also act as a bus master so in net it's the Z80 getting access to the shared resources only when nobody else is attempting an access, the 68000 having priority only when it doesn't chose to start a VDP transfer, and the VDP having top priority for those periods when the 68000 has command it to do something.



If you ever hear scratchy sampled audio in a Mega Drive game then it's likely to be the Z80 trying to stream from the cartridge but frequently losing out on access slots.



The Saturn is like a more advanced Mega Drive except that the main CPUs have caches that can also be configured as small local memory pools. So if you're careful you can mostly keep them off the shared bus, gaining a significant performance benefit — Virtua Fighter 2 manages to keep most of the data for each player local to a single CPU for most of a frame, the laziest PlayStation ports do nothing in particular and either end up only using a single CPU or effectively doing so as a result of collection.



The Jaguar is supposed to work similarly to the Saturn but, quelle surprise, Atari rushed it to market so there's a significant bug affecting the RISC CPU's accesses to RAM when performing certain types of jump. That's how it often ends up being treated as a machine with a 68000 central processor when really the 68000 was intended just to be an intelligent scheduler.



So: across these systems one generally writes a different program for each processor, and either nominates one as a coordinator or uses a series of ad hoc means of point-to-point communication.



If it sounds hard to get right, that's because it is — programmers much prefer systems like the original PlayStation with a single CPU that just goes quickly.






share|improve this answer
























    Your Answer








    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "648"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: false,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: null,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });






    Michael Stum is a new contributor. Be nice, and check out our Code of Conduct.










    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fretrocomputing.stackexchange.com%2fquestions%2f9458%2fhow-did-people-program-for-consoles-with-multiple-cpus%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    4














    It varies machine to machine; at the simplest end is the Neo Geo — its 68000 and Z80 have completely independent buses. You write one program for the 68000 and one for the Z80 and a single pipe of communication joins the two: post a byte to the Z80 and it'll trigger an NMI; the Z80 can read the command byte from a certain port and write a response to another, the 68000 can poll for the response. Neo Geo also supplied a sample set of Z80 code so you could just treat it as an advanced sound generator and not worry about the implementation if you prefer.



    The Mega Drive has a more complicated system of shared buses; the Z80 has some memory on a private bus but the cartridge bus is a shared resource and I think the Z80 can also share some RAM. In that system the VDP can also act as a bus master so in net it's the Z80 getting access to the shared resources only when nobody else is attempting an access, the 68000 having priority only when it doesn't chose to start a VDP transfer, and the VDP having top priority for those periods when the 68000 has command it to do something.



    If you ever hear scratchy sampled audio in a Mega Drive game then it's likely to be the Z80 trying to stream from the cartridge but frequently losing out on access slots.



    The Saturn is like a more advanced Mega Drive except that the main CPUs have caches that can also be configured as small local memory pools. So if you're careful you can mostly keep them off the shared bus, gaining a significant performance benefit — Virtua Fighter 2 manages to keep most of the data for each player local to a single CPU for most of a frame, the laziest PlayStation ports do nothing in particular and either end up only using a single CPU or effectively doing so as a result of collection.



    The Jaguar is supposed to work similarly to the Saturn but, quelle surprise, Atari rushed it to market so there's a significant bug affecting the RISC CPU's accesses to RAM when performing certain types of jump. That's how it often ends up being treated as a machine with a 68000 central processor when really the 68000 was intended just to be an intelligent scheduler.



    So: across these systems one generally writes a different program for each processor, and either nominates one as a coordinator or uses a series of ad hoc means of point-to-point communication.



    If it sounds hard to get right, that's because it is — programmers much prefer systems like the original PlayStation with a single CPU that just goes quickly.






    share|improve this answer




























      4














      It varies machine to machine; at the simplest end is the Neo Geo — its 68000 and Z80 have completely independent buses. You write one program for the 68000 and one for the Z80 and a single pipe of communication joins the two: post a byte to the Z80 and it'll trigger an NMI; the Z80 can read the command byte from a certain port and write a response to another, the 68000 can poll for the response. Neo Geo also supplied a sample set of Z80 code so you could just treat it as an advanced sound generator and not worry about the implementation if you prefer.



      The Mega Drive has a more complicated system of shared buses; the Z80 has some memory on a private bus but the cartridge bus is a shared resource and I think the Z80 can also share some RAM. In that system the VDP can also act as a bus master so in net it's the Z80 getting access to the shared resources only when nobody else is attempting an access, the 68000 having priority only when it doesn't chose to start a VDP transfer, and the VDP having top priority for those periods when the 68000 has command it to do something.



      If you ever hear scratchy sampled audio in a Mega Drive game then it's likely to be the Z80 trying to stream from the cartridge but frequently losing out on access slots.



      The Saturn is like a more advanced Mega Drive except that the main CPUs have caches that can also be configured as small local memory pools. So if you're careful you can mostly keep them off the shared bus, gaining a significant performance benefit — Virtua Fighter 2 manages to keep most of the data for each player local to a single CPU for most of a frame, the laziest PlayStation ports do nothing in particular and either end up only using a single CPU or effectively doing so as a result of collection.



      The Jaguar is supposed to work similarly to the Saturn but, quelle surprise, Atari rushed it to market so there's a significant bug affecting the RISC CPU's accesses to RAM when performing certain types of jump. That's how it often ends up being treated as a machine with a 68000 central processor when really the 68000 was intended just to be an intelligent scheduler.



      So: across these systems one generally writes a different program for each processor, and either nominates one as a coordinator or uses a series of ad hoc means of point-to-point communication.



      If it sounds hard to get right, that's because it is — programmers much prefer systems like the original PlayStation with a single CPU that just goes quickly.






      share|improve this answer


























        4












        4








        4







        It varies machine to machine; at the simplest end is the Neo Geo — its 68000 and Z80 have completely independent buses. You write one program for the 68000 and one for the Z80 and a single pipe of communication joins the two: post a byte to the Z80 and it'll trigger an NMI; the Z80 can read the command byte from a certain port and write a response to another, the 68000 can poll for the response. Neo Geo also supplied a sample set of Z80 code so you could just treat it as an advanced sound generator and not worry about the implementation if you prefer.



        The Mega Drive has a more complicated system of shared buses; the Z80 has some memory on a private bus but the cartridge bus is a shared resource and I think the Z80 can also share some RAM. In that system the VDP can also act as a bus master so in net it's the Z80 getting access to the shared resources only when nobody else is attempting an access, the 68000 having priority only when it doesn't chose to start a VDP transfer, and the VDP having top priority for those periods when the 68000 has command it to do something.



        If you ever hear scratchy sampled audio in a Mega Drive game then it's likely to be the Z80 trying to stream from the cartridge but frequently losing out on access slots.



        The Saturn is like a more advanced Mega Drive except that the main CPUs have caches that can also be configured as small local memory pools. So if you're careful you can mostly keep them off the shared bus, gaining a significant performance benefit — Virtua Fighter 2 manages to keep most of the data for each player local to a single CPU for most of a frame, the laziest PlayStation ports do nothing in particular and either end up only using a single CPU or effectively doing so as a result of collection.



        The Jaguar is supposed to work similarly to the Saturn but, quelle surprise, Atari rushed it to market so there's a significant bug affecting the RISC CPU's accesses to RAM when performing certain types of jump. That's how it often ends up being treated as a machine with a 68000 central processor when really the 68000 was intended just to be an intelligent scheduler.



        So: across these systems one generally writes a different program for each processor, and either nominates one as a coordinator or uses a series of ad hoc means of point-to-point communication.



        If it sounds hard to get right, that's because it is — programmers much prefer systems like the original PlayStation with a single CPU that just goes quickly.






        share|improve this answer













        It varies machine to machine; at the simplest end is the Neo Geo — its 68000 and Z80 have completely independent buses. You write one program for the 68000 and one for the Z80 and a single pipe of communication joins the two: post a byte to the Z80 and it'll trigger an NMI; the Z80 can read the command byte from a certain port and write a response to another, the 68000 can poll for the response. Neo Geo also supplied a sample set of Z80 code so you could just treat it as an advanced sound generator and not worry about the implementation if you prefer.



        The Mega Drive has a more complicated system of shared buses; the Z80 has some memory on a private bus but the cartridge bus is a shared resource and I think the Z80 can also share some RAM. In that system the VDP can also act as a bus master so in net it's the Z80 getting access to the shared resources only when nobody else is attempting an access, the 68000 having priority only when it doesn't chose to start a VDP transfer, and the VDP having top priority for those periods when the 68000 has command it to do something.



        If you ever hear scratchy sampled audio in a Mega Drive game then it's likely to be the Z80 trying to stream from the cartridge but frequently losing out on access slots.



        The Saturn is like a more advanced Mega Drive except that the main CPUs have caches that can also be configured as small local memory pools. So if you're careful you can mostly keep them off the shared bus, gaining a significant performance benefit — Virtua Fighter 2 manages to keep most of the data for each player local to a single CPU for most of a frame, the laziest PlayStation ports do nothing in particular and either end up only using a single CPU or effectively doing so as a result of collection.



        The Jaguar is supposed to work similarly to the Saturn but, quelle surprise, Atari rushed it to market so there's a significant bug affecting the RISC CPU's accesses to RAM when performing certain types of jump. That's how it often ends up being treated as a machine with a 68000 central processor when really the 68000 was intended just to be an intelligent scheduler.



        So: across these systems one generally writes a different program for each processor, and either nominates one as a coordinator or uses a series of ad hoc means of point-to-point communication.



        If it sounds hard to get right, that's because it is — programmers much prefer systems like the original PlayStation with a single CPU that just goes quickly.







        share|improve this answer












        share|improve this answer



        share|improve this answer










        answered 2 hours ago









        TommyTommy

        15.6k14476




        15.6k14476






















            Michael Stum is a new contributor. Be nice, and check out our Code of Conduct.










            draft saved

            draft discarded


















            Michael Stum is a new contributor. Be nice, and check out our Code of Conduct.













            Michael Stum is a new contributor. Be nice, and check out our Code of Conduct.












            Michael Stum is a new contributor. Be nice, and check out our Code of Conduct.
















            Thanks for contributing an answer to Retrocomputing Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fretrocomputing.stackexchange.com%2fquestions%2f9458%2fhow-did-people-program-for-consoles-with-multiple-cpus%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Gersau Kjelder | Navigasjonsmeny46°59′0″N 8°31′0″E46°59′0″N...

            What is the “three and three hundred thousand syndrome”?Who wrote the book Arena?What five creatures were...

            Are all UTXOs locked by an address spent in a transaction?UTXO all sent to change address?Signing...